LIMIT-THEOREMS FOR CUMULATIVE PROCESSES

被引:24
作者
GLYNN, PW
WHITT, W
机构
[1] AT&T BELL LABS, ROOM 2C-178, MURRAY HILL, NJ 07974 USA
[2] STANFORD UNIV, DEPT OPERAT RES, STANFORD, CA 94305 USA
关键词
REGENERATIVE PROCESSES; CUMULATIVE PROCESSES; RANDOM SUMS; RENEWAL PROCESSES; CENTRAL LIMIT THEOREM; LAW OF LARGE NUMBERS; LAW OF THE ITERATED LOGARITHM; FUNCTIONAL LIMIT THEOREMS;
D O I
10.1016/0304-4149(93)90019-Z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary and sufficient conditions are established for cumulative process (associated with regenerative processes) to obey several classical limit theorems; e.g., a strong law of large numbers, a law of the iterated logarithm and a functional central limit theorem. The key random variables are the integral of the regenerative process over one cycle and the supremum of the absolute value of this integral over all possible initial segments of a cycle. The tail behavior of the distribution of the second random variable determines whether the cumulative process obeys the same limit theorem as the partial sums of the cycle integrals. Interesting open problems are the necessary conditions for the weak law of large numbers and the ordinary central limit theorem.
引用
收藏
页码:299 / 314
页数:16
相关论文
共 26 条
[1]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[2]   ASYMPTOTIC PROPERTIES OF CUMULATIVE PROCESSES [J].
BROWN, M ;
ROSS, SM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (01) :93-&
[3]  
Chung K. L., 1960, MARKOV CHAINS STATIO
[4]  
Chung K. L., 1974, COURSE PROBABILITY T
[5]  
Ethier S.N., 2005, MARKOV PROCESSES CHA, Vsecond
[6]  
Feller W., 1971, INTRO PROBABILITY TH, VVolume II
[7]  
Glynn P. W., 1987, Queueing Systems Theory and Applications, V1, P279, DOI 10.1007/BF01149539
[8]   AN LIL VERSION OF L=LAMBDA-W [J].
GLYNN, PW ;
WHITT, W .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (04) :693-710
[9]   ORDINARY CLT AND WLLN VERSIONS OF L=LAMBDA-W [J].
GLYNN, PW ;
WHITT, W .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (04) :674-692
[10]  
Gnedenko B.V., 1968, LIMIT DISTRIBUTIONS, VRevised