NATURALNESS VERSUS SUPERSYMMETRIC NON-RENORMALIZATION THEOREMS

被引:325
作者
SEIBERG, N
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway
关键词
D O I
10.1016/0370-2693(93)91541-T
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give an intuitive proof of a new non-renormalization theorem in supersymmetric field theories. It applies both perturbatively and non-perturbatively. The superpotential is not renormalized in perturbation theory but receives non-perturbative corrections. However, these non-perturbative corrections are not generic functions of the fields consistent with the symmetries. Certain invariant terms are not generated. This violation of naturalness has applications to dynamical supersymmetry breaking.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 27 条
  • [1] DYNAMICAL SUPERSYMMETRY BREAKING IN CHIRAL THEORIES
    AFFLECK, I
    DINE, M
    SEIBERG, N
    [J]. PHYSICS LETTERS B, 1984, 137 (3-4) : 187 - 192
  • [2] DYNAMICAL SUPERSYMMETRY BREAKING IN SUPERSYMMETRIC QCD
    AFFLECK, I
    DINE, M
    SEIBERG, N
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 493 - 534
  • [3] SUPERSYMMETRY BREAKING BY INSTANTONS
    AFFLECK, I
    DINE, M
    SEIBERG, N
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (12) : 1026 - 1029
  • [4] INSTANTONS AND (SUPER-) SYMMETRY-BREAKING IN (2+1) DIMENSIONS
    AFFLECK, I
    HARVEY, J
    WITTEN, E
    [J]. NUCLEAR PHYSICS B, 1982, 206 (03) : 413 - 439
  • [5] DYNAMICAL SUPERSYMMETRY BREAKING IN 4 DIMENSIONS AND ITS PHENOMENOLOGICAL IMPLICATIONS
    AFFLECK, I
    DINE, M
    SEIBERG, N
    [J]. NUCLEAR PHYSICS B, 1985, 256 (04) : 557 - 599
  • [6] EXPONENTIAL HIERARCHY FROM DYNAMICAL SUPERSYMMETRY BREAKING
    AFFLECK, I
    DINE, M
    SEIBERG, N
    [J]. PHYSICS LETTERS B, 1984, 140 (1-2) : 59 - 62
  • [7] AFFLECK I, 1984, PHYS REV LETT, V52, P493
  • [8] NON-PERTURBATIVE ASPECTS IN SUPERSYMMETRIC GAUGE-THEORIES
    AMATI, D
    KONISHI, K
    MEURICE, Y
    ROSSI, GC
    VENEZIANO, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 162 (04): : 169 - 248
  • [9] AMATI D, 1984, PHYS LETT B, V138, P195
  • [10] BERSHADSKY M, HUTP90A008