COMPARISONS OF EUKARYOTIC GENOMIC SEQUENCES

被引:126
作者
KARLIN, S
LADUNGA, I
机构
[1] Department of Mathematics, Stanford University, Stanford
[2] Dept. for Molec. and Human Genetics, Baylor College of Medicine, Houston, TX 77030, One Baylor Plaza
关键词
DINUCLEOTIDE RELATIVE ABUNDANCE; MOLECULAR EVOLUTION; STACKING ENERGIES;
D O I
10.1073/pnas.91.26.12832
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method for assessing genomic similarity based on relative abundances of short oligonucleotides in large DNA samples is introduced. The method requires neither homologous sequences nor prior sequence alignments. The analysis centers on (i) dinucleotide (and tri- and tetra-) relative abundance extremes in genomic sequences, (ii) distances between sequences based on all dinucleotide relative abundance values, and (iii) a multidimensional partial ordering protocol. The emphasis in this paper is on assessments of general relatedness of genomes as distinguished from phylogenetic reconstructions. Our methods demonstrate that the relative abundance distances almost always differ more for genomic interspecific sequence comparisons than for genomic intraspecific sequence comparisons, indicating congruence over different genome sequence samples. The genomic comparisons are generally concordant with accepted phylogenies among vertebrate and among fungal species sequences. Several unexpected relationships between the major groups of metazoa, fungal, and protist DNA emerge, including the following. (i) Schizosaccharomyces pombe and Saccharomyces cerevisiae in dinucleotide relative abundance distances are as similar to each other as human is to bovine, (ii) S. cerevisiae, although substantially far from, is significantly closer to the vertebrates than are the invertebrates (Drosophila melanogaster, Bombyx mori, and Caenorhabditis elegans). This phenomenon may suggest variable evolutionary rates during the metazoan radiations and slower changes in the fungal divergences, and/or a polyphyletic origin of metazoa. (iii) The genomic sequences of D. melanogaster and Trypanosoma brucei are strikingly similar. This DNA similarity might be explained by some molecular adaptation of the parasite to its dipteran (tsetse fly) host, a host-parasite gene transfer hypothesis. Robustness of the methods may be due to a genomic signature of dinucleotide relative abundance values reflecting DNA structures related to dinucleotide stacking energies, constraints of DNA curvature, and mechanisms attendant to replication, repair, and recombination.
引用
收藏
页码:12832 / 12836
页数:5
相关论文
共 19 条
[1]   ANIMALS AND FUNGI ARE EACH OTHERS CLOSEST RELATIVES - CONGRUENT EVIDENCE FROM MULTIPLE PROTEINS [J].
BALDAUF, SL ;
PALMER, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11558-11562
[2]   PREDICTING DNA DUPLEX STABILITY FROM THE BASE SEQUENCE [J].
BRESLAUER, KJ ;
FRANK, R ;
BLOCKER, H ;
MARKY, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3746-3750
[3]  
BRUNS TD, 1991, ANNU REV ECOL SYST, V22, P525, DOI 10.1146/annurev.es.22.110191.002521
[4]   OVER-REPRESENTATION AND UNDER-REPRESENTATION OF SHORT OLIGONUCLEOTIDES IN DNA-SEQUENCES [J].
BURGE, C ;
CAMPBELL, AM ;
KARLIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (04) :1358-1362
[5]  
Calladine CR., 1992, UNDERSTANDING DNA
[6]  
DELCOURT SG, 1990, J BIOL CHEM, V266, P15160
[7]  
HOLLANDER M, 1973, NONPARAMETRIC STATIS
[8]   SEQUENCE-DEPENDENT DNA-STRUCTURE - THE ROLE OF BASE STACKING INTERACTIONS [J].
HUNTER, CA .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 230 (03) :1025-1054
[9]   COMPUTATIONAL DNA-SEQUENCE ANALYSIS [J].
KARLIN, S ;
CARDON, LR .
ANNUAL REVIEW OF MICROBIOLOGY, 1994, 48 :619-654
[10]   HETEROGENEITY OF GENOMES - MEASURES AND VALUES [J].
KARLIN, S ;
LADUNGA, I ;
BLAISDELL, BE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12837-12841