HARTREE-FOCK THEORY FOR COULOMB SYSTEMS

被引:361
作者
LIEB, EH
SIMON, B
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08540
[2] PRINCETON UNIV,DEPT PHYS,PRINCETON,NJ 08540
[3] YESHIVA UNIV,DEPT PHYS,NEW YORK,NY 10003
关键词
D O I
10.1007/BF01609845
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:185 / 194
页数:10
相关论文
共 33 条
[1]  
Adams R., 1976, SOBOLEV SPACES
[2]  
BADER P, THESIS LAUSANNE
[3]   EXISTENCE AND BOUNDS FOR CRITICAL ENERGIES OF HARTREE OPERATOR [J].
BAZLEY, N ;
SEYDEL, R .
CHEMICAL PHYSICS LETTERS, 1974, 24 (01) :128-132
[4]  
BEHLING R, UPPER LOWER BOUNDS C
[5]   EXPONENTIAL DECAY AND REGULARITY PROPERTIES OF HARTREE APPROXIMATION TO BOUND-STATE WAVEFUNCTIONS OF HELIUM ATOM [J].
BENCI, V ;
FORTUNATO, D ;
ZIRILLI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (07) :1154-1155
[6]  
BETHE H, 1969, INTERMEDIATE QUANTUM
[7]   EXISTENCE PROOF FOR HARTREE-FOCK TIME-DEPENDENT PROBLEM WITH BOUNDED 2-BODY INTERACTION [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (03) :183-191
[8]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[9]  
Fermi E., 1927, REND ACCAD NAZ LINCE, V6, P602
[10]   Approximation method for the solution of the quantum mechanical multibody problems [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1930, 61 (1-2) :126-148