SMOOTH NONPARAMETRIC-ESTIMATION OF THE QUANTILE FUNCTION

被引:15
作者
ZELTERMAN, D [1 ]
机构
[1] UNIV MINNESOTA,SCH PUBL HLTH,DIV BIOSTAT,MINNEAPOLIS,MN 55455
基金
美国国家卫生研究院;
关键词
D O I
10.1016/0378-3758(90)90136-I
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A smooth kernel estimator Rn(p) is proposed for nonparametric estimation of a population quantile ξp and its derivative ∂ξp ∂p. When the sample size n is large, the weights that Rn assigns to each order statistic are equivalent to the weights of the Qp statistic of Harrell and Davis (1982) and the Kp statistic of Kaigh and Lachenbruch (1982). The statistic Rn is a member of the class of estimators studied by Yang (1985) and uses a normal kernel function with a bandwidth proportional to{ p(1 - p) n} 1 2. A cross-validation technique is proposed for estimation of the smoothing parameter of Rn. Simulations indicate that the cross-validated Rn has a smaller mean squared error than Qp weighted over all values of p. © 1990.
引用
收藏
页码:339 / 352
页数:14
相关论文
共 25 条
[1]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[2]   USING EXTREME VALUE THEORY TO ESTIMATE LARGE PERCENTILES [J].
BOOS, DD .
TECHNOMETRICS, 1984, 26 (01) :33-39
[3]  
DAVID HA, 1981, ORDER STATISTICS
[4]   A LEISURELY LOOK AT THE BOOTSTRAP, THE JACKKNIFE, AND CROSS-VALIDATION [J].
EFRON, B ;
GONG, G .
AMERICAN STATISTICIAN, 1983, 37 (01) :36-48
[5]   RELATIVE DEFICIENCY OF KERNEL TYPE ESTIMATORS OF QUANTILES [J].
FALK, M .
ANNALS OF STATISTICS, 1984, 12 (01) :261-268
[6]  
HARRELL FE, 1982, BIOMETRIKA, V69, P635
[7]  
Johnson N.L., 1969, DISCRETE DISTRIBUTIO
[8]   NUMERICAL AND GRAPHICAL DATA SUMMARY USING O-STATISTICS [J].
KAIGH, WD ;
DRISCOLL, MF .
AMERICAN STATISTICIAN, 1987, 41 (01) :25-32
[9]  
KAIGH WD, 1982, COMMUN STAT A-THEOR, V11, P2217