ON THE EVOLUTION EQUATION OF AN INVISCID VORTEX IN 2-D TURBULENCE

被引:3
作者
HE, XY
机构
[1] Mathematics Research Centre, University of Warwick, Coventry
关键词
D O I
10.1016/0960-0779(94)90077-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a stochastic method, an evolution equation for an inviscid 2-D vortex is derived to calculate probability distributions of its position r over arrow pointing right (t), vorticity amplitude omega and size l. For a vortex in an external rotating strain, a critical curve found divides the existence and non-existence of the vortex in the parameter space. This curve is in agreement with known results for a steady elliptical vortex in strain, except in a region where the vorticity of the vortex is opposite to that of the external flow, the vortex is not predicted to survive statistical fluctuations.
引用
收藏
页码:693 / 699
页数:7
相关论文
共 17 条
[1]   SELF-SIMILAR COHERENT STRUCTURES IN TWO-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
PATARNELLO, S ;
SANTANGELO, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05) :1221-1237
[2]   THE STATISTICS OF THE ORGANIZED VORTICAL STRUCTURE IN TURBULENT MIXING LAYERS [J].
BERNAL, LP .
PHYSICS OF FLUIDS, 1988, 31 (09) :2533-2543
[3]   QUANTIFICATION OF THE INELASTIC INTERACTION OF UNEQUAL VORTICES IN 2-DIMENSIONAL VORTEX DYNAMICS [J].
DRITSCHEL, DG ;
WAUGH, DW .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (08) :1737-1744
[4]   VORTEX PROPERTIES OF 2-DIMENSIONAL TURBULENCE [J].
DRITSCHEL, DG .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (04) :984-997
[5]  
DRITSCHEL DG, 1989, MATH ASPECTS VORTEX
[6]  
DRTISCHEL DG, 1990, J FLUID MECH, V210, P223
[7]  
FERNHOLZ HH, 1989, ADV TURBULENCE, V2
[8]  
HE X, UNPUB CHAOS SOLITON
[9]  
HOPFINGER EJ, 1993, ANNU REV FLUID MECH, V25, P241
[10]   MOTION OF AN ELLIPTIC VORTEX IN A UNIFORM SHEAR-FLOW [J].
KIDA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (10) :3517-3520