INHIBITION OF CDK2 ACTIVITY IN-VIVO BY AN ASSOCIATED 20K REGULATORY SUBUNIT

被引:775
作者
GU, Y
TURCK, CW
MORGAN, DO
机构
[1] UNIV CALIF SAN FRANCISCO,DEPT PHYSIOL,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT MED,SAN FRANCISCO,CA 94143
[3] UNIV CALIF SAN FRANCISCO,HOWARD HUGHES MED INST,SAN FRANCISCO,CA 94143
关键词
D O I
10.1038/366707a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE major events of the cell division cycle are triggered by periodic changes in the activity of cyclin-dependent protein kinases (CDKs). In mammals, the members of the CDK family include CDK2 and CDC2, which are thought to be involved in the control of DNA replication and mitosis, respectively1-3. The protein kinase activity of these enzymes is controlled by a complex array of mechanisms4-6. Activation of the CDK catalytic subunit requires association with a positive regulatory subunit (cyclin) and phosphorylation (at Thr 160 in CDK2). This activated complex can be inhibited by additional phosphorylation at Thr 14 and Tyr 15. Here we report the identification of a new mechanism for the regulation of CDK2 activity. We find that CDK2/cyclin complexes in mouse fibroblasts associate tightly with a 20K protein (CAP20). Complexes containing CAP20 were isolated from cell lysates and found to have negligible kinase activity, indicating that CAP20 association in vivo may inhibit CDK2 activity. We purified CAP20 from 3T3 cells and found that low concentrations of the protein completely inhibit the kinase activity of CDK2 in vitro. Thus CAP20 represents a new negative regulatory subunit that inhibits the activity of CDK2/cyclin complexes in mammalian cells.
引用
收藏
页码:707 / 710
页数:4
相关论文
共 22 条
[1]   CRYSTAL-STRUCTURE OF CYCLIN-DEPENDENT KINASE-2 [J].
DEBONDT, HL ;
ROSENBLATT, J ;
JANCARIK, J ;
JONES, HD ;
MORGAN, DO ;
KIM, SH .
NATURE, 1993, 363 (6430) :595-602
[2]   ACTIVATION OF HUMAN CYCLIN-DEPENDENT KINASES INVITRO [J].
DESAI, D ;
GU, Y ;
MORGAN, DO .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (05) :571-582
[3]  
Draetta Giulio, 1993, Trends in Cell Biology, V3, P287, DOI 10.1016/0962-8924(93)90001-H
[4]   EVIDENCE THAT THE G1-S AND G2-M TRANSITIONS ARE CONTROLLED BY DIFFERENT CDC2 PROTEINS IN HIGHER EUKARYOTES [J].
FANG, F ;
NEWPORT, JW .
CELL, 1991, 66 (04) :731-742
[5]   CYCLIN-A IS REQUIRED FOR THE ONSET OF DNA-REPLICATION IN MAMMALIAN FIBROBLASTS [J].
GIRARD, F ;
STRAUSFELD, U ;
FERNANDEZ, A ;
LAMB, NJC .
CELL, 1991, 67 (06) :1169-1179
[6]   CELL-CYCLE REGULATION OF CDK2 ACTIVITY BY PHOSPHORYLATION OF THR160 AND TYR15 [J].
GU, Y ;
ROSENBLATT, J ;
MORGAN, DO .
EMBO JOURNAL, 1992, 11 (11) :3995-4005
[8]  
HARPER JW, 1993, CELL, V75, P805
[9]   FORMATION AND ACTIVATION OF A CYCLIN E-CDK2 COMPLEX DURING THE G(1)-PHASE OF THE HUMAN CELL-CYCLE [J].
KOFF, A ;
GIORDANO, A ;
DESAI, D ;
YAMASHITA, K ;
HARPER, JW ;
ELLEDGE, S ;
NISHIMOTO, T ;
MORGAN, DO ;
FRANZA, BR ;
ROBERTS, JM .
SCIENCE, 1992, 257 (5077) :1689-1694
[10]  
NODA A, IN PRESS EXP CELL RE