POLYNOMIAL FACTORIZATION VIA RICCATI EQUATION

被引:22
作者
CLEMENTS, DJ [1 ]
ANDERSON, BDO [1 ]
机构
[1] UNIV NEWCASTLE,DEPT ELECT ENGN,NEWCASTLE 2308,NEW S WALES,AUSTRALIA
关键词
D O I
10.1137/0131017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of factoring a real polynomial f(z), nonzero on the unit circle, as the product of two polynomials u(z) and v(z) with zeros inside and outside the unit circle is tackled. The individual zeros of f(z) are not found. Riccati difference equations are shown to provide a tool for executing the factorization.
引用
收藏
页码:179 / 205
页数:27
相关论文
共 22 条
[1]   RECURSIVE ALGORITHM FOR SPECTRAL FACTORIZATION [J].
ANDERSON, BD ;
HITZ, KL ;
DIEM, ND .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, CA21 (06) :742-750
[2]  
ANDERSON BDO, 1973, NETWORK ANALYSIS SYN
[3]  
Bauer F. L., 1955, AEU-ARCH ELEKTRON UB, V9, P285
[4]  
BAUER FL, 1954, SITZUNGSBERICHTE MN, P275
[5]  
BAUER FL, 1956, SITZ BER BAYER AKAD, P163
[6]  
Brockett, 1970, FINITE DIMENSIONAL L
[7]  
Gantmacher, 1959, THEORY MATRICES, P125
[8]  
Gantmacher F., 1959, THEORY MATRICES, VI
[9]  
Gohberg I. C., 1960, AM MATH SOC T, V14, P217, DOI [10.1090/trans2/014/09, DOI 10.1090/TRANS2/014/09]
[10]  
HO BL, 1966, 4 P ALL C CIRC SYST, P388