ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD

被引:186
作者
BABUSKA, I [1 ]
SURI, M [1 ]
机构
[1] UNIV MARYLAND,DEPT MATH & STAT,CATONSVILLE,MD 21228
关键词
LOCKING; ROBUSTNESS; FINITE ELEMENT METHOD; PARAMETER-DEPENDENT; ELLIPTIC; PARTIAL DIFFERENTIAL EQUATION;
D O I
10.1137/0729075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the approximation of a parameter-dependent problem is said to exhibit locking if the accuracy of the approximations deteriorates as the parameter tends to a limiting value. A robust numerical scheme for the problem is one that is essentially uniformly convergent for all values of the parameter. Precise mathematical definitions for these terms are developed, their quantitative characterization is given, and some general theorems involving locking and robustness are proven. A model problem involving heat transfer is analyzed in detail using this mathematical framework, and various related computational results are described. Applications to some different problems involving locking are presented.
引用
收藏
页码:1261 / 1293
页数:33
相关论文
共 13 条
[1]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[2]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[3]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[4]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[5]  
BABUSKA I, IN PRESS NUMER MATH
[6]  
Brezzi F., 1986, Reliability of Methods for Engineering Analysis. Proceedings of the International Conference, P197
[7]   MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES [J].
BREZZI, F ;
BATHE, KJ ;
FORTIN, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1787-1801
[8]  
LI L, 1990, NUMER MATH, V57, P1
[9]  
Macneal R.H., 1985, FINITE ELEM ANAL DES, V1, P3, DOI [10.1016/0168-874X(85)90003-4, DOI 10.1016/0168-874X(85)90003-4]
[10]  
Necas J., 1967, METHODES DIRECTES TH