EQUATIONS FOR INSP(3) RECEPTOR-MEDIATED [CA2+](I) OSCILLATIONS DERIVED FROM A DETAILED KINETIC-MODEL - A HODGKIN-HUXLEY LIKE FORMALISM

被引:462
作者
LI, YX
RINZEL, J
机构
[1] Mathematical Research Branch, NIDDKD, National Institute of Health, Bethesda
关键词
D O I
10.1006/jtbi.1994.1041
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nine-variable De Young-Keizer model (1992) for [Ca2+](i) oscillations mediated by InsP3 receptor channels in endoplasmic reticulum (ER) membrane is analyzed and reduced to a two-variable system. The different time scales in the three basic channel gating processes, namely InsP3 regulation, Ca2+ activation, and Ca2+ inactivation, are revealed and characterized. The method of multiple scales is used in solving the equations on a succession of faster time scales and reducing them to a 2D system. The reduced system, (V(cy)/f(cy)) dC/dt = - P(IP3R)m(∞)/3h3(C - C0) - P(L)(C - C0) - J(pump)(C); dh/dt = (h(∞) - h)/τ(h), is analogous in form to the Hodgkin-Huxley equations for plasma membrane electrical excitability. [Ca2+](i) dynamics in this model thus involve ER membrane-associated excitability. The reduced system has a bifurcation diagram almost identical to that of the original system and retains the most important dynamic features of the latter. The analysis also shows that the reduced system becomes simpler when the different gating processes are more independent from each other, i.e. when the rates for Ca2+ binding at the site associated with one gating process are independent of occupancy at the other two binding sites. Assuming further that binding of InsP3 does not depend on Ca2+ occupancy at the inactivation site, we obtain a ‘minimal’ form yet retain significant ability to reproduce experimental observations. © 1994 Academic Press. All rights reserved.
引用
收藏
页码:461 / 473
页数:13
相关论文
共 44 条
[1]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[2]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[3]   MODELING RECEPTOR-CONTROLLED INTRACELLULAR CALCIUM OSCILLATORS [J].
CUTHBERTSON, KSR ;
CHAY, TR .
CELL CALCIUM, 1991, 12 (2-3) :97-109
[4]   A SINGLE-POOL INOSITOL 1,4,5-TRISPHOSPHATE-RECEPTOR-BASED MODEL FOR AGONIST-STIMULATED OSCILLATIONS IN CA2+ CONCENTRATION [J].
DEYOUNG, GW ;
KEIZER, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) :9895-9899
[5]  
Doedel E. J., 1981, CONGRESSUS NUMERANTI, V30, P265
[6]  
DUPONT G, 1989, CELL TO CELL SIGNALLING : FROM EXPERIMENTS TO THEORETICAL MODELS, P461
[8]   ABNORMAL RYANODINE RECEPTOR CHANNELS IN MALIGNANT HYPERTHERMIA [J].
FILL, M ;
CORONADO, R ;
MICKELSON, JR ;
VILVEN, J ;
MA, JJ ;
JACOBSON, BA ;
LOUIS, CF .
BIOPHYSICAL JOURNAL, 1990, 57 (03) :471-475
[9]   CALCIUM AS A COAGONIST OF INOSITOL 1,4,5-TRISPHOSPHATE INDUCED CALCIUM RELEASE [J].
FINCH, EA ;
TURNER, TJ ;
GOLDIN, SM .
SCIENCE, 1991, 252 (5004) :443-446
[10]  
FOSKETT JK, 1991, J BIOL CHEM, V266, P2778