EXISTENCE OF LONG-RANGE ORDER IN THE STEADY-STATE OF A 2-DIMENSIONAL, 2-TEMPERATURE XY MODEL

被引:26
作者
BASSLER, KE
RACZ, Z
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV, DEPT PHYS, BLACKSBURG, VA 24061 USA
[2] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.R9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Monte Carlo simulations are used to show that the steady state of the d = 2, two-temperature, diffusive XY model displays a continuous phase transition from a homogeneous disordered phase to a phase with long-range order. The long-range order exists although both the dynamics and the interactions are local, thus indicating the failure of a naive extension of the Mermin-Wagner theorem to nonequilibrium steady states. It is argued that the ordering is due to effective dipole interactions generated by the nonequilibrium dynamics.
引用
收藏
页码:R9 / R12
页数:4
相关论文
共 18 条