THE COURANT-HILBERT SOLUTIONS OF THE WAVE-EQUATION

被引:27
作者
HILLION, P
机构
[1] Institut Henri Poincaré
关键词
D O I
10.1063/1.529595
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Bateman transformations which generate many new solutions from a particular solution of the scalar wave equation in a homogeneous medium are discussed. The Bateman transformations are then used to classify the Courant-Hilbert solutions of the wave equation. The latter are the product of an arbitrary function F of the phase u, a solution of the characteristic equation, and of a specific attenuation factor f that does not depend on the particular form of F. It is shown that for a given phase u, f is not unique. Consequently, there exist spherical waves F(r+/-ct) with an attenuation factor different from r-1.
引用
收藏
页码:2749 / 2753
页数:5
相关论文
共 18 条
[1]  
BATEMAN H, 1959, PARTIAL DIFFERENTIAL
[2]  
BATEMAN H, 1909, P LOND MATH SOC, V7, P77
[3]  
Bluman G. W., 1989, SYMMETRIES DIFFERENT
[4]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[5]   THE GOURSAT PROBLEM FOR THE HOMOGENEOUS WAVE-EQUATION [J].
HILLION, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) :1939-1941
[6]   ELECTROMAGNETIC INHOMOGENEOUS PULSES [J].
HILLION, P .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1991, 5 (09) :959-969
[7]   NONHOMOGENEOUS NONDISPERSIVE ELECTROMAGNETIC-WAVES [J].
HILLION, P .
PHYSICAL REVIEW A, 1992, 45 (04) :2622-2627
[8]  
Hillion P., 1991, Reviews in Mathematical Physics, V3, P371, DOI 10.1142/S0129055X91000138
[9]  
HILLION P, UNPUB INT J THEOR PH
[10]  
HILLION P, UNPUB J EUR OPT SOC