ON THE 2ND EIGENVALUE AND RANDOM-WALKS IN RANDOM D-REGULAR GRAPHS

被引:97
作者
FRIEDMAN, J [1 ]
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
关键词
D O I
10.1007/BF01275669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to estimate the magnitude of the second largest eigenvalue in absolute value, lambda-2, of (the adjacency matrix of) a random d-regular graph, G. In order to do so, we study the probability that a random walk on a random graph returns to its originating vertex at the k-th step, for various values of k. Our main theorem about eigenvalues is that [GRAPHICS] for any m less-than-or-equal-to 2 left-perpendicular log n left-perpendicular square-root 2d-1/2 right-perpendicular / log d right-perpendicular, where E denotes the expected value over a certain probability space of 2d-regular graphs. It follows, for example, that for fixed d the second eigenvalue's magnitude is no more than 2 square-root 2d-1 + 2 log d + C' with probability 1 - n-C for constants C and C' for sufficiently large n.
引用
收藏
页码:331 / 362
页数:32
相关论文
共 11 条
[1]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[2]  
Broder A., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P286, DOI 10.1109/SFCS.1987.45
[3]   THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES [J].
FUREDI, Z ;
KOMLOS, J .
COMBINATORICA, 1981, 1 (03) :233-241
[4]   A LIMIT-THEOREM FOR THE NORM OF RANDOM MATRICES [J].
GEMAN, S .
ANNALS OF PROBABILITY, 1980, 8 (02) :252-261
[5]  
Kahn J., COMMUNICATION
[6]  
Knuth D. E., 2011, ART COMPUTER PROGRAM, V4
[7]  
MARGULIS G, 1987, UNPUB RUSSIAN GRAPHS
[8]   THE EXPECTED EIGENVALUE DISTRIBUTION OF A LARGE REGULAR GRAPH [J].
MCKAY, BD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 40 (OCT) :203-216
[9]   EXPLICIT CONCENTRATORS FROM GENERALIZED N-GONS [J].
TANNER, RM .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (03) :287-293
[10]   CHARACTERISTIC VECTORS OF BORDERED MATRICES WITH INFINITE DIMENSIONS [J].
WIGNER, EP .
ANNALS OF MATHEMATICS, 1955, 62 (03) :548-564