STABILIZATION BY NOISE REVISITED

被引:53
作者
ARNOLD, L
机构
[1] Institut für Dynamische Systeme, Universität Bremen, Bremen
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1990年 / 70卷 / 07期
关键词
D O I
10.1002/zamm.19900700704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a d × d matrix A and a d × k matrix B. We investigate how the stability behavior of ẋ = (A + BG(t)) × can be improved by a k × d matrix‐valued white noise process G(t). The analysis is based on the theory of Lyapunov exponents (exponential growth rates) and uses an averaging principle. It generalizes a result by the author and co‐workers for the case B = identity, in which the top Lyapunov exponent can be brought arbitrarily close to trace A/d by cleverly choosing G(t). Copyright © 1990 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:235 / 246
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 1987, DIFFUSIONS MARKOV PR
[2]   LYAPUNOV EXPONENTS - A SURVEY [J].
ARNOLD, L ;
WIHSTUTZ, V .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :1-26
[3]   LYAPUNOV EXPONENTS AND ROTATION NUMBER OF TWO-DIMENSIONAL SYSTEMS WITH TELEGRAPHIC NOISE [J].
ARNOLD, L ;
KLOEDEN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (04) :1242-1274
[4]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[5]  
ARNOLD L, 1987, LECT NOTES CONTR INF, V96, P117
[6]   ASYMPTOTIC ANALYSIS OF THE LYAPUNOV EXPONENT AND ROTATION NUMBER OF THE RANDOM OSCILLATOR AND APPLICATIONS [J].
ARNOLD, L ;
PAPANICOLAOU, G ;
WIHSTUTZ, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (03) :427-450
[7]  
ARNOLD L, 1984, LECTURE NOTE MATH, V1186, P129
[8]   STABILITY OF FAST PERIODIC-SYSTEMS [J].
BELLMAN, R ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :289-291
[9]  
Bucher CG, 1988, J FLUIDS STRUCT, V2, P437
[10]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [10.1090/S0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0]