GEOMETRY OF KDV (4) - ABEL SUMS, JACOBI VARIETY, AND THETA FUNCTION IN THE SCATTERING CASE

被引:27
作者
ERCOLANI, N [1 ]
MCKEAN, HP [1 ]
机构
[1] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
关键词
D O I
10.1007/BF01234429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:483 / 544
页数:62
相关论文
共 28 条
[1]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[2]  
[Anonymous], IZV ROSS AKAD NAUK M
[3]  
ARBARBELLO E, 1985, GEOMETRY ALGEBRAIC C
[4]  
Baker H. F., 1897, INTRO THEORY MULTIPL
[6]   SCATTERING-THEORY FOR THE KORTEWEG-DE VRIES (KDV) EQUATION AND ITS HAMILTONIAN INTERPRETATION [J].
BUSLAEV, VS ;
FADDEEV, LD ;
TAKHTAJAN, LA .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :255-266
[7]  
Darboux G., 1882, CR HEBD ACAD SCI, V94, P1456
[8]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[9]   FREDHOLM DETERMINANTS AND INVERSE SCATTERING PROBLEMS [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) :171-183
[10]  
ERCOLANI NM, 1988, QUICK PROOF FAYS SEC