A SURVEY ON UNIVARIATE DATA INTERPOLATION AND APPROXIMATION BY SPLINES OF GIVEN SHAPE

被引:49
作者
GREINER, H
机构
[1] Philips Forschungslabor GmbH, Weisshausstrasse
关键词
QUADRATIC SPLINES; CONSTRAINED INTERPOLATION; PRESERVING INTERPOLATION; ARBITRARY DEGREE; MONOTONIC DATA; POSITIVE INTERPOLATION; CONVEX INTERPOLATION; CUBIC INTERPOLATION; RATIONAL SPLINE; HILBERT-SPACE;
D O I
10.1016/0895-7177(91)90094-N
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The construction of spline functions possessing certain shapes like monotonicity, convexity or nonnegativity is an important concern in data representation and computer-aided design. The literature on the subject is reviewed with the aim to help in the selection of the method best suited for a given application.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 92 条
[1]   AN ALGORITHM FOR CONSTRAINED INTERPOLATION [J].
ANDERSSON, LE ;
ELFVING, T .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :1012-1025
[2]  
ANDERSSON LE, 1990, LITHMATR199003 U LIN
[3]  
ANTHONY HM, 1989, IMA J MATH APPL MED, V6, P91
[4]   MONOTONE AND CONVEX APPROXIMATION BY SPLINES - ERROR-ESTIMATES AND A CURVE FITTING ALGORITHM [J].
BEATSON, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (06) :1278-1285
[5]   POST-PROCESSING PIECEWISE CUBICS FOR MONOTONICITY [J].
BEATSON, RK ;
WOLKOWICZ, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) :480-502
[6]   CONVEX APPROXIMATION BY SPLINES [J].
BEATSON, RK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :549-559
[7]   CONVEX SPLINE INTERPOLANTS WITH MINIMAL CURVATURE [J].
BURMEISTER, W ;
HESS, W ;
SCHMIDT, JW .
COMPUTING, 1985, 35 (02) :219-229
[8]  
BURMEISTER W, 1987, DISCRETIZATION DIFFE, P57
[9]   DEGREE OF LP APPROXIMATION BY MONOTONE SPLINES [J].
CHUI, CK ;
SMITH, PW ;
WARD, JD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (03) :436-447
[10]   CONSTRAINED BEST APPROXIMATION IN HILBERT-SPACE [J].
CHUI, CK ;
DEUTSCH, F ;
WARD, JD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) :35-64