SPECTRAL METHODS IN TIME FOR HYPERBOLIC-EQUATIONS

被引:129
作者
TALEZER, H
机构
[1] Tel-Aviv Univ, Sch of Mathematical, Sciences, Tel-Aviv, Isr, Tel-Aviv Univ, Sch of Mathematical Sciences, Tel-Aviv, Isr
关键词
COMPUTER PROGRAMMING - Algorithms;
D O I
10.1137/0723002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pseudospectral numerical scheme for solving linear, periodic, hyperbolic problems is described. It has infinite accuracy both in time and in space. the high accuracy in time is achieved without increasing the computational work and memory space which is needed for a regular, one step explicit scheme. The algorithm is shown to be optimal in the sense that among all the explicit algorithms of a certain class it requires the least amount of work to achieve a certain given resolution. The class of algorithms referred to consists of all explicit schemes which may be represented as a polynomial in the spatial operator.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 16 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Cody W.J., 1969, J APPROXIMATION THEO, V2, P50, DOI [10.1016/0021-9045(69)90030-6, DOI 10.1016/0021-9045(69)90030-6]
[3]  
Davis, 1975, INTERPOLATION APPROX, DOI 10.1112/jlms/s1-39.1.568
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]   FOURIER METHOD FOR INTEGRATION OF HYPERBOLIC EQUATIONS [J].
FORNBERG, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :509-528
[6]  
Gantmacher F., 1959, THEORY MATRICES, VI
[7]  
GOTTLIEB D, 1980, STUD APPL MATH, V63, P67
[8]  
GOTTLIEB D, 1981, MATH COMPUT, V37, P293, DOI 10.1090/S0025-5718-1981-0628696-6
[9]  
Gottlieb D., 1977, CBMS REGIONAL C SERI, V26
[10]  
KREISS HO, METHODS APPROXIMATE