SYMMETRY-BREAKING IN THE DOUBLE-WELL HERMITIAN MATRIX MODELS

被引:25
作者
BROWER, RC
DEO, N
JAIN, S
TAN, CI
机构
[1] CERN,DIV THEORY,CH-1211 GENEVA 23,SWITZERLAND
[2] HARVARD UNIV,RADCLIFFE,MARY INGRAHAM BUNTING INST,CAMBRIDGE,MA 02138
[3] HARVARD UNIV,LYMAN LAB PHYS,CAMBRIDGE,MA 02138
[4] BROWN UNIV,DEPT PHYS,PROVIDENCE,RI 02912
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(93)90430-W
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study symmetry breaking in Z2 symmetric large N matrix models. In the planar approximation for both the symmetric double-well phi4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients R(n) and S(n) that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle theta(x), for each value of x = n/N < 1. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well phi4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0 less-than-or-equal-to l < infinity and a single arbitrary U(1) phase angle.
引用
收藏
页码:166 / 187
页数:22
相关论文
共 35 条
[1]   NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION [J].
BESSIS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) :147-163
[2]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[3]   PHASE-TRANSITIONS IN ONE MATRIX MODELS [J].
BHANOT, G ;
MANDAL, G ;
NARAYAN, O .
PHYSICS LETTERS B, 1990, 251 (03) :388-392
[4]   UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS [J].
BOWICK, MJ ;
BREZIN, E .
PHYSICS LETTERS B, 1991, 268 (01) :21-28
[5]  
BROWER RC, UNPUB
[6]  
CHAUDHURI S, 1991, IN PRESS 20TH P INT
[7]  
Cicuta G. M., 1986, MOD PHYS LETT, V01, P125
[8]   MULTICRITICAL POINTS IN MATRIX MODELS [J].
CICUTA, GM ;
MOLINARI, L ;
MONTALDI, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :L421-L425
[9]   MULTICRITICAL MULTI-CUT MATRIX MODELS [J].
CRNKOVIC, C ;
MOORE, G .
PHYSICS LETTERS B, 1991, 257 (3-4) :322-328
[10]  
CRNKOVIC C, YCTPP2591 YAL PREPR