ON THE SIMULTANEOUS DETERMINATION OF DISPERSION AND NONLINEAR ADSORPTION PARAMETERS FROM DISPLACEMENT TESTS BY USING NUMERICAL-MODELS AND OPTIMIZATION TECHNIQUES

被引:5
作者
GRATTONI, CA [1 ]
DAWE, RA [1 ]
BIDNER, MS [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,LONDON SW7 2AZ,ENGLAND
关键词
OPTIMIZATION TECHNIQUES; DISPERSION; ADSORPTION; DISPLACEMENT TESTS; NUMERICAL MODELS; PARAMETERS;
D O I
10.1016/0309-1708(93)90003-X
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on displacement tests in core material using multivariable optimisation techniques. The numerical solutions are obtained by solving the convection-dispersion-nonlinear adsorption equation by finite differences using the Crank-Nicolson method with iterations to account for nonlinearities. The optimisation routines are used to find the parameters that give the global minimum error between predicted and measured effluent curves. The results show that whenever the three parameters (the dispersion coefficient and two adsorption parameters) are simultaneously determined, the solution is not unique and depends on the adsorption model used. The nonuniqueness can be removed by performing an independent test such as a static adsorption test.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 26 条
[1]  
Baker, Effects of dispersion and dead-end pore volume in miscible flooding, Soc. Pet. Eng. J., 17, (1977)
[2]  
Bastian, Lapidus, Longitudinal diffusion in ion exchange and chromatographic columns, finite column, J. Phys. Chem., 60, (1956)
[3]  
Batycky, Maini, Fisher, Simulation of miscible displacement in full-diameter carbonate cores, Soc. Pet. Eng. J., 22, (1982)
[4]  
Brenner, The diffusion model of longitudinal mixing in beds of finite length, numerical values, Chem. Eng. Sci., 17, (1962)
[5]  
Brigham, Peed, Dew, Experiments on Mixing During Miscible Displacement in Porous Media, Society of Petroleum Engineers Journal, 1, (1961)
[6]  
Cameron, Klute, Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model, Water Resour. Res., 13, (1977)
[7]  
Carpano, Grattoni, Gabbanelli, Bidner, Análisis de las soluciones numéricas de la ecuación de convección-dispersión-adsorción, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenieria, 3, (1987)
[8]  
Coats, Smith, Dead-End Pore Volume and Dispersion in Porous Media, Society of Petroleum Engineers Journal, 4, (1964)
[9]  
Coppola, Levan, Adsorption with axial diffusion in shallow beds, Chem. Eng. Sci., 38, (1938)
[10]  
Deans, A Mathematical Model for Dispersion in the Direction Of Flow in Porous Media, Society of Petroleum Engineers Journal, 3, (1963)