ON THE ASYMPTOTIC NORMALITY OF THE L(1)-ERRORS AND L(2)-ERRORS IN HISTOGRAM DENSITY-ESTIMATION

被引:26
作者
BEIRLANT, J
GYORFI, L
LUGOSI, G
机构
[1] CATHOLIC UNIV LEUVEN,DEPT MATH,B-3000 LOUVAIN,BELGIUM
[2] TECH UNIV BUDAPEST,DEPT MATH & COMP SCI,H-1521 BUDAPEST,HUNGARY
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1994年 / 22卷 / 03期
关键词
NONPARAMETRIC DENSITY ESTIMATION; CENTRAL LIMIT THEOREM; HISTOGRAM ESTIMATE;
D O I
10.2307/3315594
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The L1- and L2-errors of the histogram estimate of a density f from a sample X1, X2,..., X(n) using a cubic partition are shown to be asymptotically normal without any unnecessary conditions imposed on the density f. The asymptotic variances are shown to depend on f only through the corresponding norm of f. From this follows the asymptotic null distribution of a goodness-of-fit test based on the total variation distance, introduced by Gyorfi and van der Meulen (1991). This note uses the idea of partial inversion for obtaining characteristic functions of conditional distributions, which goes back at least to Bartlett (1938).
引用
收藏
页码:309 / 318
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1991, INTRO PROBABILITY TH
[2]  
Bartlett M., 1938, J LONDON MATH SOC, P62
[3]   CENTRAL LIMIT-THEOREMS FOR LP-NORMS OF DENSITY ESTIMATORS [J].
CSORGO, M ;
HORVATH, L .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :269-291
[4]  
Csorgo M., 1981, STRONG APPROXIMATION
[5]   THE KERNEL ESTIMATE IS RELATIVELY STABLE [J].
DEVROYE, L .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (04) :521-536
[6]  
DEVROYE L, 1991, NONPARAMETRIC FUNCTI, P31
[7]  
Devroye L., 1985, NONPARAMETRIC DENSIT
[8]  
GYORFI L, 1991, NONPARAMETRIC FUNCTI, P631
[10]   ASYMPTOTIC NORMALITY OF SUM-FUNCTIONS OF SPACINGS [J].
HOLST, L .
ANNALS OF PROBABILITY, 1979, 7 (06) :1066-1072