GR VIA CHARACTERISTIC SURFACES

被引:69
作者
FRITTELLI, S [1 ]
KOZAMEH, C [1 ]
NEWMAN, ET [1 ]
机构
[1] NATL UNIV CORDOBA,FAMAF,RA-5000 CORDOBA,ARGENTINA
关键词
D O I
10.1063/1.531210
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reformulate the Einstein equations as equations for families of surfaces on a four-manifold. These surfaces eventually become characteristic surfaces for an Einstein metric (with or without sources). In particular they are formulated in terms of two functions on R(4)xS(2), i.e., the sphere bundle over space-time, one of the functions playing the role of a conformal factor for a family of associated conformal metrics, the other function describing an S-2's worth of surfaces at each spacetime point. It is from these families of surfaces themselves that the conformal metric, conformal to an Einstein metric, is constructed; the conformal factor turns them into Einstein metrics. The surfaces are null surfaces with respect to this metric. (C) 1995 American Institute of Physics.
引用
收藏
页码:4984 / 5004
页数:21
相关论文
共 19 条
[1]   LINEARIZED EINSTEIN THEORY VIA NULL SURFACES [J].
FRITTELLI, S ;
KOZAMEH, CN ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :5005-5022
[2]  
Geroch R., 1977, ASYMPTOTIC STRUCTURE
[3]   SPIN-S SPHERICAL HARMONICS AND EDTH [J].
GOLDBERG, JN ;
MACFARLA.AJ ;
NEWMAN, ET ;
ROHRLICH, F ;
SUDARSHA.CG .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) :2155-&
[4]   METRIC AND CURVATURE PROPERTIES OF H-SPACE [J].
HANSEN, RO ;
NEWMAN, ET ;
PENROSE, R ;
TOD, KP .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 363 (1715) :445-468
[5]   GREEN-FUNCTIONS OF THE EDH OPERATORS [J].
IVANCOVICH, J ;
KOZAMEH, C ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) :45-52
[6]  
IYER S, 1993, THESIS U PGH
[7]  
IYER S, 1992, J GEOM PHYS, V8, P195
[8]   LIGHT-CONE CUTS OF I+ FOR CHARGED-KERR GEOMETRY [J].
JOSHI, PS ;
NEWMAN, ET .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (12) :1157-1162
[9]   LIGHT-CONE CUTS OF NULL INFINITY IN SCHWARZSCHILD GEOMETRY [J].
JOSHI, PS ;
KOZAMEH, CN ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (10) :2490-2497
[10]  
KO M, 1981, PHYS REP, V71, P53