FINITE-DIFFERENCE METHODS FOR EIGENVALUES

被引:42
作者
KILLINGBECK, J
机构
关键词
D O I
10.1088/0022-3700/15/6/009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:829 / 834
页数:6
相关论文
共 22 条
[1]   1ST ORDER PERTURBATIVE NUMERICAL-METHOD FOR SOLUTION OF RADIAL SCHRODINGER EQUATION [J].
ADAM, G ;
IXARU, LG ;
CORCIOVEI, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (01) :1-33
[2]   3-DIMENSIONAL QUARTIC OSCILLATOR [J].
BELL, S ;
DAVIDSON, R ;
WARSOP, PA .
JOURNAL OF PHYSICS PART B ATOMIC AND MOLECULAR PHYSICS, 1970, 3 (02) :123-&
[3]  
Cooley JW., 1961, MATH COMPUT, V15, P363, DOI [10.2307/2003025, DOI 10.2307/2003025]
[4]   SUPERSINGULAR QUANTUM PERTURBATIONS [J].
DETWILER, LC ;
KLAUDER, JR .
PHYSICAL REVIEW D, 1975, 11 (06) :1436-1441
[5]   NUMERICAL SOLUTION OF AN UNHARMONIC OSCILLATOR EIGENVALUE PROBLEM BY MILNES METHOD [J].
EZAWA, H ;
NAKAMURA, K ;
YAMAMOTO, Y .
PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02) :168-&
[6]  
FOX L, 1968, COMPUTING METHODS SC
[7]   NUMERICAL-SOLUTION OF SCHROEDINGERS RADIAL EQUATION [J].
HAJJ, FY ;
KOBEISSE, H ;
NASSIF, NR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1974, 16 (02) :150-159
[9]   SOME APPLICATIONS OF PERTURBATION-THEORY TO NUMERICAL-INTEGRATION METHODS FOR THE SCHRODINGER EQUATION [J].
KILLINGBECK, J .
COMPUTER PHYSICS COMMUNICATIONS, 1979, 18 (02) :211-214
[10]   AN ALTERNATIVE TO JWKB THEORY [J].
KILLINGBECK, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07) :L231-L234