DISCRETE SYMMETRIES IN THE WEYL EXPANSION FOR QUANTUM BILLIARDS

被引:5
作者
PAVLOFF, N
机构
[1] Div. De Phys. Theor., Inst. De Phys. Nucl., Orsay
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 12期
关键词
D O I
10.1088/0305-4470/27/12/034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider two- and three-dimensional quantum billiards with discrete symmetries. The boundary condition is either Dirichlet or Neumann. We derive the first terms of the Weyl expansion for the level density projected onto the irreducible representations of the symmetry group. The formulae require only knowledge of the character table of the group and the geometrical properties (such as surface, perimeter etc ... ) of sub-parts of the billiard invariant under a group transformation. As an illustration, the method is applied to the icosahedral billiard.
引用
收藏
页码:4317 / 4323
页数:7
相关论文
共 18 条
[1]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .1. 3-DIMENSIONAL PROBLEM WITH SMOOTH BOUNDARY SURFACE [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1970, 60 (02) :401-&
[2]  
Baltes H P., 1976, SPECTRA FINITE SYSTE
[3]  
BERRY MV, 1994, UNPUB P R SOC
[4]   SPECTRAL PROPERTIES OF THE LAPLACIAN AND RANDOM MATRIX THEORIES [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (21) :1015-1022
[5]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[6]  
BOHIGAS O, 1991, CHAOS QUANTUM MECHAN
[7]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[8]   POLYAKOVS QUANTIZED STRING WITH BOUNDARY TERMS [J].
DURHUUS, B ;
OLESEN, P ;
PETERSEN, JL .
NUCLEAR PHYSICS B, 1982, 198 (01) :157-188
[9]  
Economou E. N., 1983, SPRINGER SERIES SOLI, V7
[10]  
GUTZWILLER M., 1990, CHAOS CLASSICAL QUAN