STRIATAL DOPAMINE METABOLISM IS DIFFERENTIALLY AFFECTED BY INSULIN ACCORDING TO THE GENOTYPE IN ZUCKER RATS - A MICRODIALYSIS STUDY

被引:9
作者
OROSCO, M
ROUCH, C
GRIPOIS, D
BLOUQUIT, MF
ROFFI, J
JACQUOT, C
COHEN, Y
机构
[1] FAC PHARM CHATENAY MALABRY,PHARMACOL LAB,F-92290 CHATENAY MALABRY,FRANCE
[2] UNIV PARIS 11,ENDOCRINOL LAB,F-91405 ORSAY,FRANCE
关键词
D O I
10.1016/0306-4530(92)90002-O
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The genetically obese Zucker rat presents several abnormalities related to insulin and brain monoamines, which may play a role in its impaired regulation of food intake and body weight. In a previous study, the possible insulin-monoamine interplay was investigated by measuring brain monoamine and metabolite levels in the three genotypes of the Zucker strain. In addition to the expected results, insulin had a particular effect on striatal dopamine (DA) release, regardless of ponderal status and genotype. We further investigated this point in the present study, using the brain microdialysis technique in the striatum. Lean homozygous Fa-Fa rats responded as expected to insulin with regard to striatal DA release, with increases in DA and 3-methoxy-tyramine levels and decreases in dihydroxyphenylacetic acid and homovanillic acid. Lean heterozygous Fa-fa rats showed a very specific response profile, with decreases in all dopaminergic parameters, suggestive of an effect on DA synthesis rather than DA release. This further emphasizes the marked differences between homozygous and heterozygous lean rats. The obese fa-fa rats clearly fell into two populations. The first showed a profile of response to insulin similar to that of the lean Fa-fa rats, in keeping with the disturbances related to the ''fa'' gene. The second showed an increase in all the dopaminergic parameters. This pattern of response was, however, different from that of the Fa-Fa rats. These opposing responses in the two obese populations did not reflect differences in the blood glucose response to insulin. One explanation is that 16 wk may be a critical transition period in the development of genetic obesity, with regard to brain monoamine disturbances and the response to insulin.
引用
收藏
页码:443 / 452
页数:10
相关论文
共 31 条
[1]   ANESTHESIA AND INSULIN-SECRETION - EFFECTS OF DIETHYL-ETHER, HALOTHANE, PENTOBARBITAL SODIUM AND KETAMINE HYDROCHLORIDE ON INTRAVENOUS GLUCOSE-TOLERANCE AND INSULIN-SECRETION IN RAT [J].
AYNSLEYGREEN, A ;
BIEBUYCK, JF ;
ALBERTI, KGM .
DIABETOLOGIA, 1973, 9 (04) :274-281
[2]   GENETICALLY-OBESE ZUCKER RATS HAVE ABNORMALLY LOW BRAIN INSULIN CONTENT [J].
BASKIN, DG ;
STEIN, LJ ;
IKEDA, H ;
WOODS, SC ;
FIGLEWICZ, DP ;
PORTE, D ;
GREENWOOD, MRC ;
DORSA, DM .
LIFE SCIENCES, 1985, 36 (07) :627-633
[3]  
BITAR M, 1986, J PHARMACOL EXP THER, V236, P432
[4]   DIABETES-INDUCED CHANGES IN MONOAMINE CONCENTRATIONS OF RAT HYPOTHALAMIC NUCLEI [J].
BITAR, MS ;
KOULU, M ;
LINNOILA, M .
BRAIN RESEARCH, 1987, 409 (02) :236-242
[5]   BIOCHEMICAL DIFFERENTIATION OF AMPHETAMINE VS METHYLPHENIDATE AND NOMIFENSINE IN RATS [J].
BRAESTRUP, C .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 1977, 29 (08) :463-470
[6]   SIGNIFICANCE OF DOPAMINE METABOLITES IN EVALUATION OF DRUGS ACTING ON DOPAMINERGIC-NEURONS [J].
DIGIULIO, AM ;
GROPPETTI, A ;
CATTABENI, F ;
GALLI, CL ;
MAGGI, A ;
ALGERI, S ;
PONZIO, F .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1978, 52 (02) :201-207
[7]   BRAIN-SEROTONIN CONTENT - PHYSIOLOGICAL REGULATION BY PLASMA NEUTRAL AMINO-ACIDS [J].
FERNSTROM, JD ;
WURTMAN, RJ .
SCIENCE, 1972, 178 (4059) :414-+
[8]   CHANGES IN LATERAL HYPOTHALAMIC NEURONAL-ACTIVITY ACCOMPANYING HYPERGLYCEMIAS AND HYPOGLYCEMIAS [J].
HIMMI, T ;
BOYER, A ;
ORSINI, JC .
PHYSIOLOGY & BEHAVIOR, 1988, 44 (03) :347-354
[9]   INTRAVENTRICULAR INSULIN REDUCES FOOD-INTAKE AND BODY-WEIGHT OF LEAN BUT NOT OBESE ZUCKER RATS [J].
IKEDA, H ;
WEST, DB ;
PUSTEK, JJ ;
FIGLEWICZ, DP ;
GREENWOOD, MRC ;
PORTE, D ;
WOODS, SC .
APPETITE, 1986, 7 (04) :381-386
[10]  
IMPERATO A, 1984, J NEUROSCI, V4, P966