A PARALLEL ITERATIVE PROCEDURE APPLICABLE TO THE APPROXIMATE SOLUTION OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS BY MIXED FINITE-ELEMENT METHODS

被引:85
作者
DOUGLAS, J
LEME, PJP
ROBERTS, JE
WANG, JP
机构
[1] INST POLITECN RIO DE JANEIRO,BR-28600 NOVA FRIBURG,BRAZIL
[2] PONTIFICIA UNIV CATOLICA RIO DE JANEIRO,DEPT MATH,BR-22453 RIO JANEIRO,BRAZIL
[3] INRIA,ROCQUENCOURT,FRANCE
[4] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
[5] UNIV WYOMING,DEPT MATH,LARAMIE,WY 82071
关键词
D O I
10.1007/BF01385742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parallelizable iterative procedure based on domain decomposition techniques is defined and analyzed for mixed finite element methods for elliptic equations, with the analysis being presented for the decomposition of the domain into the individual elements associated with the mixed method or into larger subdomains. Applications to time-dependent problems are indicated.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 1977, MATH ASPECTS FINITE
[2]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[3]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
BREZZI F, 1985, MAT APL COMPUT, V4, P19
[6]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[7]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[8]  
Chen Z., 1989, Calcolo, V26, P135, DOI 10.1007/BF02575725
[9]  
COWSAR LC, 1990, 4TH P INT S DOM DEC
[10]  
de Veubeke B.F., 1965, STRESS ANAL