THE KNOTTING OF EQUILATERAL POLYGONS IN R(3)

被引:63
作者
DIAO, YN
机构
关键词
KNOTS; KNOTTED POLYGONS; RANDOM WALKS; RANDOM POLYGONS; PROBABILITY OF KNOTTING;
D O I
10.1142/S0218216595000090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was proved in [4] that the knotting probability of a Gaussian random polygon goes to 1 as the length of the polygon goes to infinity. In this paper, we prove the same result for the equilateral random polygons in R(3). More precisely, if EP(n) is an equilateral random polygon of n steps, then we have P(EP(n) is knotted) > 1 - exp(-n(epsilon)), provided that n is large enough, where epsilon is some positive constant.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 8 条
[1]  
Burde G., 1985, KNOTS
[2]  
Delbruck M., 1962, P S APPL MATH, V14, P55
[3]  
DIAO Y, IN PRESS J KNOT THEO
[4]  
DIAO Y, 1990, THESIS FLORIDA STATE
[5]   CHEMICAL TOPOLOGY [J].
FRISCH, HL ;
WASSERMAN, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1961, 83 (18) :3789-&
[6]   KNOTS IN RANDOM-WALKS [J].
PIPPENGER, N .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :273-278
[7]  
RAYLEIGH JWS, 1919, PHILOS MAG, V37, P321
[8]  
Summers D. W., 1988, J PHYS A, V21, P1689