DYNAMICAL-SYSTEMS ON QUANTUM TORI LIE-ALGEBRAS

被引:12
作者
HOPPE, J [1 ]
OLSHANETSKY, M [1 ]
THEISEN, S [1 ]
机构
[1] MOSCOW THEORET & EXPTL PHYS INST,MOSCOW 117258,RUSSIA
关键词
D O I
10.1007/BF02096721
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use quantum tori Lie algebras (QTLA), which are a one-parameter family of sub-algebras of gl(infinity), to describe local and non-local versions of the Toda systems. It turns out that the central charge of QTLA is responsible for the non-locality. There are two regimes in the local systems - conformal for irrational values of the parameter and non-conformal and integrable for its rational values. We also consider infinite-dimensional analogs of rigid tops. Some of these systems give rise to ''quantized'' (magneto-)hydrodynamic equations of an ideal fluid on a torus. We also consider infinite dimensional versions of the integrable Euler and Clebsch cases.
引用
收藏
页码:429 / 448
页数:20
相关论文
共 37 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[3]  
[Anonymous], PUBL I HAUTES ETUDES
[4]  
BELLISSARD J, SPRINGER LECT NOTES, V257, P99
[5]   INTEGRABLE FIELD-THEORIES FROM POISSON ALGEBRAS [J].
BORDEMANN, M ;
HOPPE, J ;
THEISEN, S .
PHYSICS LETTERS B, 1991, 267 (03) :374-376
[6]  
DEGASPERIS A, 1991, COMMUN MATH PHYS, V141, P141
[7]  
Drinfel'd V. G., 1985, J SOV MATH, V30, P1975, DOI DOI 10.1007/BF02105860
[8]   TRIGONOMETRIC STRUCTURE CONSTANTS FOR NEW INFINITE-DIMENSIONAL ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 218 (02) :203-206
[9]   INFINITE-DIMENSIONAL ALGEBRAS AND A TRIGONOMETRIC BASIS FOR THE CLASSICAL LIE-ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1088-1094
[10]   A NOTE ON SU(INFINITY) CLASSICAL YANG-MILLS THEORIES [J].
FLORATOS, EG ;
ILIOPOULOS, J ;
TIKTOPOULOS, G .
PHYSICS LETTERS B, 1989, 217 (03) :285-288