INSTABILITY IN A CLASSICAL PERIODICALLY DRIVEN STRING

被引:28
作者
DITTRICH, J
DUCLOS, P
SEBA, P
机构
[1] UNIV TOULON & VAR,EQUIPE PHYS MATH,F-83130 LA GARDE,FRANCE
[2] CNRS,CTR PHYS THEOR,MARSEILLE,FRANCE
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 04期
关键词
D O I
10.1103/PhysRevE.49.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The existence of instability (in the sense of unlimited growth of energy) in a classical periodically driven one-dimensional string is proven mathematically and demonstrated numerically.
引用
收藏
页码:3535 / 3538
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]   QUANTUM SUPPRESSION OF CHAOTIC DIFFUSION - THEORY AND EXPERIMENT [J].
BRIVIO, GP ;
CASATI, G ;
PEROTTI, L ;
GUARNERI, I .
PHYSICA D, 1988, 33 (1-3) :51-57
[3]  
DORIZZI B, 1984, J STAT PHYS, V37, P93, DOI 10.1007/BF01012906
[4]   STUDY OF A QUANTUM FERMI-ACCELERATION MODEL [J].
JOSE, JV ;
CORDERY, R .
PHYSICAL REVIEW LETTERS, 1986, 56 (04) :290-293
[5]  
LANDAU LD, 1965, MECHANICS
[6]   QUANTUM CHAOS IN THE FERMI-ACCELERATOR MODEL [J].
SEBA, P .
PHYSICAL REVIEW A, 1990, 41 (05) :2306-2310
[7]  
YAKUBOVITCZ VA, 1989, PARAMETRIC RESONANCE
[8]  
[No title captured]