AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS

被引:1157
作者
ARNOLD, DN [1 ]
机构
[1] UNIV MARYLAND, INST PHYS SCI & TECHNOL, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1137/0719052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:742 / 760
页数:19
相关论文
共 13 条
[1]  
AGMON S, 1965, LECTURES ELLIPTIC BO
[2]  
ARNOLD DN, 1979, THESIS U CHICAGO CHI
[3]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[4]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[5]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[6]  
DOUGLAS J, 1979, 2ND P INT C COMP MET
[7]  
DOUGLAS J, 1976, LECTURE NOTES PHYSIC, V58
[8]  
KADLEC J, 1964, CZECH MATH J, V89, P386
[9]  
Nitsche J., 1971, ABH MATH SEM HAMBURG, V36, P9
[10]   LOCAL RESIDUAL FINITE-ELEMENT PROCEDURE FOR ELLIPTIC EQUATIONS [J].
PERCELL, P ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :705-714