FRACTAL RANDOM-WALKS FROM A VARIATIONAL FORMALISM FOR TSALLIS ENTROPIES

被引:147
作者
ALEMANY, PA [1 ]
ZANETTE, DH [1 ]
机构
[1] UNIV NACL CUYO,INST BALSEIRO,RA-8400 BARILOCHE,RIO NEGRO,ARGENTINA
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 02期
关键词
D O I
10.1103/PhysRevE.49.R956
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that random walks in which the set of visited points is a fractal emerge from a maximum entropy formalism applied to the generalized entropies introduced by Tsallis [J. Stat. Phys. 52, 479 (1988)], upon suitable constraints. This connection between fractals and Tsallis entropies suggests that the generalized statistical mechanics derived from the latter could provide a natural frame for studying fractally structured systems.
引用
收藏
页码:R956 / R958
页数:3
相关论文
共 30 条
  • [1] Binney J, 2008, GALACTIC DYNAMICS PR, V2nd
  • [2] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [3] A FRACTAL APPROACH TO ENTROPY AND DISTRIBUTION-FUNCTIONS
    BUYUKKILIC, F
    DEMIRHAN, D
    [J]. PHYSICS LETTERS A, 1993, 181 (01) : 24 - 28
  • [4] CHAME A, UNPUB
  • [5] CURADO EME, 1991, J PHYS A-MATH GEN, V24, P3187
  • [6] GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS
    CURADO, EMF
    TSALLIS, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02): : L69 - L72
  • [7] CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
  • [8] SPECIFIC-HEAT OF A FREE PARTICLE IN A GENERALIZED BOLTZMANN-GIBBS STATISTICS
    DASILVA, EP
    TSALLIS, C
    CURADO, EMF
    [J]. PHYSICA A, 1993, 199 (01): : 137 - 153
  • [9] MIXING AND VIOLENT RELAXATION FOR THE ONE-DIMENSIONAL GRAVITATIONAL COULOMB GAS
    KANDRUP, HE
    [J]. PHYSICAL REVIEW A, 1989, 40 (12): : 7265 - 7274
  • [10] TWO-DIMENSIONAL TURBULENCE
    KRAICHNAN, RH
    MONTGOMERY, D
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (05) : 547 - 619