THE ASYMPTOTIC STABILITY OF ONE-PARAMETER METHODS FOR NEUTRAL DIFFERENTIAL-EQUATIONS

被引:115
作者
KUANG, JX [1 ]
XIANG, JX [1 ]
TIAN, HJ [1 ]
机构
[1] SHANGHAI NORMAL UNIV, DEPT MATH, SHANGHAI 200234, PEOPLES R CHINA
关键词
ASYMPTOTIC STABILITY; NUMERICAL STABILITY; ONE-PARAMETER METHODS; SYSTEMS OF NEUTRAL DIFFERENTIAL EQUATIONS;
D O I
10.1007/BF01935649
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper deals with the asymptotic stability of theoretical solutions and numerical methods for systems of neutral differential equations x' = Ax'(t - tau) + Bx(t) + Cx(t - tau), where A, B, and C are constant complex N x N matrices, and tau > 0. A necessary and sufficient condition such that the differential equations are asymptotically stable is derived. We also focus on the numerical stability properties of adaptations of one-parameter methods. Further, we investigate carefully the characterization of the stability region.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 14 条
[1]  
Barwell V. K., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P130, DOI 10.1007/BF01932685
[2]  
Bellman R., 1963, DIFFERENTIAL DIFFERE, DOI 10.1063/1.3050672
[3]  
BRYTON RK, 1967, J MATH ANAL APPL, V18, P182
[4]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[5]  
HENRICI P, 1974, APPLIED COMPUTATIONA, V1
[6]   STABILITY ANALYSIS OF NUMERICAL-METHODS FOR DELAY DIFFERENTIAL-EQUATIONS [J].
HOUT, KJI ;
SPIJKER, MN .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :807-814
[7]  
INTHOUT KJ, 1993, REPORT SERIES, V282
[8]  
KNOPP K, 1955, FUNKTIONEN THEORIE, V2
[9]  
Lancaster P., 1985, COMPUTER SCI APPL MA
[10]   THE STABILITY OF THE THETA-METHODS IN THE NUMERICAL-SOLUTION OF DELAY DIFFERENTIAL-EQUATIONS [J].
LIU, MZ ;
SPIJKER, MN .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :31-48