LARGE DEVIATIONS AND THE MAXIMUM-ENTROPY PRINCIPLE FOR MARKED POINT RANDOM-FIELDS

被引:47
作者
GEORGII, HO [1 ]
ZESSIN, H [1 ]
机构
[1] UNIV BIELEFELD,FAK MATH,W-4800 BIELEFELD 1,GERMANY
关键词
D O I
10.1007/BF01192132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish large deviation principles for the stationary and the individual empirical fields of Poisson, and certain interacting, random fields of marked point particles in R(d). The underlying topologies are induced by a class of not necessarily bounded local functions, and thus finer than the usual weak topologies. Our methods yield further that the limiting behaviour of conditional Poisson distributions, as well as certain distributions of Gibbsian type, is governed by the maximum entropy principle. We also discuss various applications and examples.
引用
收藏
页码:177 / 204
页数:28
相关论文
共 21 条
[1]   SANOV PROPERTY, GENERALIZED I-PROJECTION AND A CONDITIONAL LIMIT-THEOREM [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1984, 12 (03) :768-793
[2]  
Daley D, 2002, INTRO THEORY POINT P
[3]   MICROCANONICAL DISTRIBUTIONS FOR LATTICE GASES [J].
DEUSCHEL, JD ;
STROOCK, DW ;
ZESSIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) :83-101
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR GHS INEQUALITY WITH APPLICATIONS TO ANALYSIS AND PROBABILITY [J].
ELLIS, RS ;
NEWMAN, CM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 237 (MAR) :83-99
[5]  
FOLLMER H., 1988, ECOLE DETE PROBABILI, V1362
[6]  
Fritz J., 1970, STUDIA SCI MATH HUNG, V5, P369
[7]  
Georgii H-O, 1988, GIBBS MEASURES PHASE
[8]  
GEORGII HO, 1993, IN PRESS ANN PROBAB
[9]  
GEORGII HO, 1993, 1992 P PRAG WORKSH P
[10]  
KRICKEBERG K, 1980, LECT NOTES MATH, V929, P206