UNIVERSAL GRAVITATIONAL EQUATIONS

被引:34
作者
FERRARIS, M
FRANCAVIGLIA, M
VOLOVICH, I
机构
[1] UNIV JL LAGRANGE,IST FIS MATEMAT,I-10123 TURIN,ITALY
[2] VA STEKLOV MATH INST,117966 MOSCOW,RUSSIA
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1993年 / 108卷 / 11期
关键词
D O I
10.1007/BF02741283
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for a wide class of Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the first-order formalism, i.e. treating the metric and the connection as independent variables, leads to <<universal>> equations. If the dimension n of space-time is greater than two, these universal equations are Einstein equations for a generic Lagrangian. There are exceptional cases where a bifurcation appears. In particular, bifurcations take place for conformally invariant Lagrangians L=R(n/2)root g. For 2-dimensional space-time we obtain that the universal equation is the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi-Civita connection of the metric and an additional vector field.
引用
收藏
页码:1313 / 1317
页数:5
相关论文
共 16 条
[1]   ONE-LOOP DIVERGENCES OF EINSTEIN-YANG-MILLS SYSTEM [J].
DESER, S ;
TSAO, HS ;
VANNIEUWENHUIZE.P .
PHYSICAL REVIEW D, 1974, 10 (10) :3337-3342
[2]  
FERRARIS M, 1986, 6 C NAZ REL GEN FIS, P127
[3]   1ST-ORDER FORMALISM OF F(R) GRAVITY [J].
HAMITY, VH ;
BARRACO, DE .
GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (05) :461-471
[4]   GENERAL RELATIVITY WITH SPIN AND TORSION - FOUNDATIONS AND PROSPECTS [J].
HEHL, FW ;
VONDERHEYDE, P ;
KERLICK, GD ;
NESTER, JM .
REVIEWS OF MODERN PHYSICS, 1976, 48 (03) :393-416
[5]   QUADRATIC LAGRANGIANS AND GENERAL RELATIVITY [J].
HIGGS, PW .
NUOVO CIMENTO, 1959, 11 (06) :816-820
[6]   2-DIMENSIONAL GRAVITY WITH DYNAMICAL TORSION AND STRINGS [J].
KATANAEV, MO ;
VOLOVICH, IV .
ANNALS OF PHYSICS, 1990, 197 (01) :1-32
[7]   LEGENDRE TRANSFORMATION AND DYNAMIC STRUCTURE OF HIGHER-DERIVATIVE GRAVITY [J].
MAGNANO, G ;
FERRARIS, M ;
FRANCAVIGLIA, M .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (04) :557-570
[8]   SPONTANEOUS COMPACTIFICATION AND COUPLING-CONSTANTS IN R2 UNIFIED GAUGE-THEORIES [J].
ROSENBAUM, M ;
RYAN, M .
PHYSICAL REVIEW D, 1988, 37 (10) :2920-2933
[9]   NEW GHOST-FREE GRAVITY LAGRANGIANS WITH PROPAGATING TORSION [J].
SEZGIN, E ;
VANNIEUWENHUIZEN, P .
PHYSICAL REVIEW D, 1980, 21 (12) :3269-3280
[10]   PALATINI VARIATION OF CURVATURE-SQUARED ACTION AND GRAVITATIONAL COLLAPSE [J].
SHAHIDSALESS, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) :694-697