Precise solution of few-body problems the stochastic variational method on a correlated Gaussian basis

被引:416
作者
Varga, K
Suzuki, Y
机构
[1] RIKEN, WAKO, SAITAMA 35101, JAPAN
[2] HUNGARIAN ACAD SCI, INST NUCL RES, H-4001 DEBRECEN, HUNGARY
来源
PHYSICAL REVIEW C | 1995年 / 52卷 / 06期
关键词
D O I
10.1103/PhysRevC.52.2885
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Precise variational solutions are given for problems involving diverse fermionic and bosonic (N=2-7),body systems. The trial wave functions are chosen td be combinations of correlated Gaussians, which are constructed from products of the single-particle Gaussian wave packets through an integral transformation, thereby facilitating fully analytical calculations' of the matrix elements. The nonlinear parameters of the trial function are chosen by a stochastic technique. The method has proved very efficient, virtually exact, and it seems feasible for any few-body bound-state problems emerging in nuclear or atomic physics.
引用
收藏
页码:2885 / 2905
页数:21
相关论文
共 57 条
[1]  
Friar J.L., Gibson B.F., Payne G.L., Phys. Rev. C, 24, (1981)
[2]  
Schellingerhout N.W., Kok L.P., Nucl. Phys., 508 A, (1990)
[3]  
Glockle W., Kamada H., Phys. Rev. Lett., 71, (1993)
[4]  
Kievsky A., Viviani M., Rosati S., Nucl. Phys., 501 A, (1989)
[5]  
Kievsky A., Viviani M., Rosati S., Nucl. Phys., 551 A, (1993)
[6]  
Kievsky A., Viviani M., Rosati S., Nucl. Phys., 577 A, (1994)
[7]  
Kamimura M., Kameyama H., Nucl. Phys., 508 A, (1990)
[8]  
Kameyama H., Kamimura M., Fukushima Y., Phys. Rev. C, 40, (1989)
[9]  
Carlson J., Pandharipande V.R., Nucl. Phys., 371 A, (1981)
[10]  
Wiringa R.B., Nucl. Phys., 543 A, (1992)