INTEGRATION OF NONPERIODIC FUNCTIONS OF 2 VARIABLES BY FIBONACCI LATTICE RULES

被引:20
作者
NIEDERREITER, H
SLOAN, IH
机构
[1] AUSTRIAN ACAD SCI,INST INFORMAT PROC,A-1010 VIENNA,AUSTRIA
[2] UNIV NEW S WALES,SCH MATH,SYDNEY,NSW 2033,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
NUMERICAL INTEGRATION; LATTICE RULES; FIBONACCI LATTICES;
D O I
10.1016/0377-0427(92)00004-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-dimensional lattice rules are applied to continuous functions over the unit square which do not have a continuous periodic extension, It is shown that, provided lattice points at vertices and edges are treated appropriately, certain functions (including all bilinear functions) are integrated exactly whenever the lattice contains a (possibly rotated) square unit cell. The Fibonacci lattice with denominators F(k) for the nodes is then shown to have a square unit cell if and only if k is odd. Numerical experiments for Fibonacci rules and copies of Fibonacci rules confirm that there are significant differences between the odd-k and even-k cases.
引用
收藏
页码:57 / 70
页数:14
相关论文
共 11 条
[1]  
Cassels J.W.S., 1959, INTRO GEOMETRY NUMBE, P20
[2]   LATTICE INTEGRATION RULES OF MAXIMAL RANK FORMED BY COPYING RANK-1 RULES [J].
DISNEY, S ;
SLOAN, IH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :566-577
[3]  
GIRSE RD, 1983, FIBONACCI QUART, V21, P129
[4]  
KOKSMA JF, 1936, DIOPHANTISCHE APPROX
[5]   QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS [J].
NIEDERREITER, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :957-1041
[6]  
NIEDERREITER H, 1990, MATH COMPUT, V54, P303, DOI 10.1090/S0025-5718-1990-0995212-4
[7]   POINTWISE CONVERGENCE OF MULTIPLE FOURIER-SERIES - SUFFICIENT CONDITIONS AND AN APPLICATION TO NUMERICAL-INTEGRATION [J].
PRICE, JF ;
SLOAN, IH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (01) :140-156
[8]  
SLOAN IH, 1989, MATH COMPUT, V52, P81, DOI 10.1090/S0025-5718-1989-0947468-3
[9]   LATTICE METHODS FOR MULTIPLE INTEGRATION [J].
SLOAN, IH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1985, 12-3 (MAY) :131-143
[10]   LATTICE METHODS FOR MULTIPLE INTEGRATION - THEORY, ERROR ANALYSIS AND EXAMPLES [J].
SLOAN, IH ;
KACHOYAN, PJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :116-128