ISOPERIMETRIC-INEQUALITIES FOR FACES OF THE CUBE AND THE GRID

被引:9
作者
BOLLOBAS, B
RADCLIFFE, AJ
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
[2] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1016/S0195-6698(13)80134-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A face of the cube ℘(N) = {0,1}N is a subset determined by fixing the values of some coordinates and allowing the remainder free rein. For instance, the edges of the cube are faces of dimension 1. In Section 2 of this paper we prove a best possible upper bound for the number of i-faces of ℘(N) contained in any subset of ℘(N). In particular, we show that initial segments in the binary ordering the ordering on ℘(N) induced by the map A↦ Σi∈ A 2i: ℘(N)→ ℕ—contain the greatest possible number of i-faces for any i ⩾0. In Section 3 the inequality is extended to apply to the grid [p]N for p ⩾ 2, and to give a bound on the number of i-dimensional faces enclosed by a collection of j-dimensional faces, for i ⩾j. Finally, in Section 4, we apply the face isoperimetric result to the problem which originally motivated its study. We prove a Kruskal-Katona type result for down-sets in the grid. © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 10 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[2]   MAXIMALLY CONNECTED ARRAYS ON N-CUBE [J].
BERNSTEIN, AJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (06) :1485-+
[3]  
Bollobas B., 1986, COMBINATORICS SET SY
[4]  
BOLLOBAS B, IN PRESS J COMBIN A
[5]  
Harper L. H., 1966, J COMBIN THEORY, V1, P385, DOI DOI 10.1016/S0021-9800(66)80059-5
[6]   OPTIMAL ASSIGNMENTS OF NUMBERS TO VERTICES [J].
HARPER, LH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (01) :131-135
[7]   NOTE ON EDGES OF N-CUBE [J].
HART, S .
DISCRETE MATHEMATICS, 1976, 14 (02) :157-163
[8]  
Katona G., 1968, THEOREM FINITE SETS, P187
[9]  
Kruskal J. B., 1963, MATH OPTIMIZATION TE, P251
[10]  
Lovasz L., 1979, COMBINATORIAL PROBLE