NUMERICAL STUDY OF OSCILLATORY CRACK-PROPAGATION THROUGH A 2-DIMENSIONAL CRYSTAL

被引:43
作者
HAYAKAWA, Y
机构
[1] Research Institute of Electrical Communication, Tohoku University, Katahira, Aoba-ku
关键词
D O I
10.1103/PhysRevE.49.R1804
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study fracture propagation through a two-dimensional crystal induced by thermal stress by using numerical simulations of a deterministic spring model. Controlling the applied thermal stress, we find several remarkable phases of crack patterns including straight, oscillatory, and branching morphology. We also determine the wavelength of the oscillating cracks at the transition points in accord with experiments by Yuse and Sano [Nature (London) 362, 329 (1993)].
引用
收藏
页码:R1804 / R1807
页数:4
相关论文
共 13 条
[1]   PERCOLATION ON ELASTIC NETWORKS - NEW EXPONENT AND THRESHOLD [J].
FENG, S ;
SEN, PN .
PHYSICAL REVIEW LETTERS, 1984, 52 (03) :216-219
[2]  
FERNANDEZ J, 1988, J PHYS A, V21, pL301
[3]  
FEYNMAN RP, 1964, LECTURES PHYSICS, V2
[4]   FRACTAL SHAPES OF DETERMINISTIC CRACKS [J].
HERRMANN, HJ ;
KERTESZ, J ;
DE ARCANGELIS, L .
EUROPHYSICS LETTERS, 1989, 10 (02) :147-152
[5]  
Herrmann HJ, 1990, STATISTICAL MODELS F
[6]   THE FRACTAL NATURE OF FRACTURE [J].
LOUIS, E ;
GUINEA, F .
EUROPHYSICS LETTERS, 1987, 3 (08) :871-877
[7]  
MARDER M, UNPUB
[8]   A SIMPLE TWO-DIMENSIONAL MODEL FOR CRACK-PROPAGATION [J].
MEAKIN, P ;
LI, G ;
SANDER, LM ;
LOUIS, E ;
GUINEA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09) :1393-1403
[9]   MECHANICAL PERCOLATION - A SMALL BEAM LATTICE STUDY [J].
ROUX, S ;
GUYON, E .
JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (21) :999-1004
[10]  
SASA S, COMMUNICATION