The influence of nitric oxide (NO) on vascular responses to transmural stimulation (TNS) of noradrenergic nerves was studied in isolated rings of rat iliac arteries. TNS produced frequency-dependent contractions in all vessels. The NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) significantly enhanced TNS responses in intact vessels, but not in those in which the endothelium had been removed. However, in endothelium-denuded rings incubated for 8 hours, L-NMMA increased the contractions induced by nerve stimulation, an effect which was prevented by treatment with dexamethasone or cycloheximide, and enhanced by incubation with lipopolysaccharide and γ-interferon. Addition of L-arginine reversed the effect of L-NMMA in intact rings; however, it significantly decreased below control values TNS-induced contractions in vessels without endothelium. The results indicate that a) the arterial response to noradrenergic nerve stimulation is modulated by NO originating either in endothelial cells or in smooth muscle cells after induction of NO synthase activity, and b) once NO synthase is induced, the limiting step in NO production is the availability of the substrate L-arginine. An overproduction of vascular NO in the presence of endotoxin or other inflammatory stimuli may prevent the vascular response to sympathetic stimuli and contribute to the vasodilation observed in inflammation or endotoxic shock. © 1992 Academic Press, Inc.