On minquantile and maxcovering optimisation

被引:7
作者
Carrizosa, E
Plastria, F
机构
[1] FREE UNIV BRUSSELS,CTR IND LOCAT,B-1050 BRUSSELS,BELGIUM
[2] UNIV SEVILLA,DEPT ESTADIST & IO,E-41012 SEVILLE,SPAIN
关键词
minmax; maximal covering problems; multi criteria decision-making;
D O I
10.1007/BF01592247
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we introduce the parametric minquantile problem, a weighted generalisation of kth maximum minimisation. It is shown that, under suitable quasiconvexity assumptions, its resolution can be reduced to solving a polynomial number of minmax problems. It is also shown how this simultaneously solves (parametric) maximal covering problems. It follows that bicriteria problems, where the aim is to both maximize the covering and minimize the cover-level, are reducible to a discrete problem, on which any multiple criteria method may be applied.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 17 条
[1]  
AVRIEL M, 1988, GENERALIZED CONCAVIT
[2]  
CARRIZOSA E, 1992, BEIF47 VRIJ U BRUSS
[3]  
CARRIZOSA E, 1995, IN PRESS COMPUTATION
[4]  
Demyanov VF, 1990, INTRO MINIMAX
[5]   ON MINIMAX OPTIMIZATION PROBLEMS [J].
DREZNER, Z .
MATHEMATICAL PROGRAMMING, 1982, 22 (02) :227-230
[6]  
Erkut E, 1993, COMPUT OPER RES, V1, P199
[7]  
Fishburn, 1970, UTILITY THEORY DECIS
[8]  
Geoffrion A.M., 1967, MANAGE SCI, V13, P672, DOI [DOI 10.1287/MNSC.13.9.672, 10.1287/mnsc.13.9.672]
[9]  
Keeney R.L, 2014, DECISIONS MULTIPLE O
[10]  
PLASTRIA F, 1983, THESIS VRIJE U BRUSS