VARIATIONAL PRINCIPLES FOR INCREMENTAL FINITE-ELEMENT METHODS

被引:31
作者
PIAN, THH [1 ]
机构
[1] MIT,DEPT AERONAUT & ASTRONAUT,CAMBRIDGE,MA 02139
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 1976年 / 302卷 / 5-6期
关键词
D O I
10.1016/0016-0032(76)90037-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:473 / 488
页数:16
相关论文
共 17 条
[1]  
Atluri S., 1973, International Journal of Solids and Structures, V9, P1177, DOI 10.1016/0020-7683(73)90110-8
[2]  
BOLAND P, MAR SEC NAT S COMP S
[3]  
BOLAND P, 1975, THESIS MIT
[4]  
Desai CS, 1972, INTRO FINITE ELEMENT
[5]  
HOFMEISTER LD, 1973, AIAA J, V9, P1177
[6]  
Horrigmoe G., 1976, Computer Methods in Applied Mechanics and Engineering, V7, P201, DOI 10.1016/0045-7825(76)90013-X
[7]  
MAK CK, 1973, VARIATIONAL METHODS
[8]  
MASON J, 1975, TICOM756 TEX I COMP
[9]  
Pian T. H. H., 1969, International Journal for Numerical Methods in Engineering, V1, P3, DOI 10.1002/nme.1620010103
[10]   DERIVATION OF ELEMENT STIFFNESS MATRICES BY ASSUMED STRESS DISTRIBUTIONS [J].
PIAN, THH .
AIAA JOURNAL, 1964, 2 (07) :1333-1336