HEAT KERNEL-EXPANSION FOR NONMINIMAL DIFFERENTIAL-OPERATORS AND MANIFOLDS WITH TORSION

被引:40
作者
GUSYNIN, VP [1 ]
GORBAR, EV [1 ]
ROMANKOV, VV [1 ]
机构
[1] KHARKOV STATE UNIV,KHARKOV 310077,UKRAINE,USSR
关键词
D O I
10.1016/0550-3213(91)90568-I
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The recently proposed method for computing DeWitt-Seeley-Gilkey (DWSG) coefficients in the asymptotical heal kernel expansion is extended to the case of manifolds with torsion and nonminimal differential operators. The lowest nontrivial DWSG coefficients are calculated for the second- and fourth-order minimal operators on the Riemann-Cartan manifold with general torsion and for the second-order nonminimal differential operators on riemannian spaces in arbitrary dimensions. In contrast to the second-order minimal operators the coefficients for the nonminimal operators turn out to be essentially dependent on the space dimension.
引用
收藏
页码:449 / 471
页数:23
相关论文
共 32 条
[1]   HEAT KERNEL-EXPANSION COEFFICIENT .1. AN EXTENSION [J].
BARTH, NH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (04) :857-874
[2]   STRESS-TENSOR TRACE ANOMALY IN A GRAVITATIONAL METRIC - GENERAL THEORY, MAXWELL FIELD [J].
BROWN, LS ;
CASSIDY, JP .
PHYSICAL REVIEW D, 1977, 15 (10) :2810-2829
[3]   RENORMALIZATION-GROUP APPROACH TO QUANTUM-FIELD THEORY IN CURVED SPACE-TIME [J].
BUCHBINDER, IL ;
ODINTSOV, SD ;
SHAPIRO, IL .
RIVISTA DEL NUOVO CIMENTO, 1989, 12 (10) :1-112
[4]  
CARINHAS PA, 1989, COMPUTATIONAL ASYMPT
[5]   2ND-ORDER AND 4TH-ORDER INVARIANTS ON CURVED MANIFOLDS WITH TORSION [J].
CHRISTENSEN, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (09) :3001-3009
[6]   SEELEY-DEWITT COEFFICIENTS IN A RIEMANN-CARTAN MANIFOLD [J].
COGNOLA, G ;
ZERBINI, S .
PHYSICS LETTERS B, 1988, 214 (01) :70-74
[7]   HEAT KERNEL-EXPANSION IN GEOMETRIC FIELDS [J].
COGNOLA, G ;
ZERBINI, S .
PHYSICS LETTERS B, 1987, 195 (03) :435-438
[8]  
DeWitt B. S., 1965, DYNAMICAL THEORY GRO
[9]   HEAT-EQUATION ASYMPTOTICS WITH TORSION [J].
DONNELLY, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (01) :105-113
[10]   GAUGE DEPENDENCE OF THE GRAVITATIONAL CONFORMAL ANOMALY FOR THE ELECTROMAGNETIC-FIELD [J].
ENDO, R .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (06) :1366-1384