FINITE-SIZE SCALING FOR TRANSIENT SIMILARITY AND FRACTALS

被引:14
作者
SUZUKI, M
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1984年 / 71卷 / 06期
关键词
D O I
10.1143/PTP.71.1397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1397 / 1400
页数:4
相关论文
共 15 条
[1]  
Collet P., 1980, ITERATED MAPS INTERV
[2]   CRITICAL PHENOMENA IN FILMS AND SURFACES [J].
FISHER, ME .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1973, 10 (05) :665-673
[3]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[4]  
HATA M, UNPUB J APPL MATH JP, V1
[5]   FRACTALIZATION OF TORUS [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (05) :1112-1115
[6]  
Mandelbrot B.B., 1982, FRACTAL GEOMETRY NAT, VVolume 1
[8]  
NAKANO T, 1983, 9 U TSUK I GEOSC ANN, P75
[9]   THE USE OF THE FRACTAL DIMENSION TO QUANTIFY THE MORPHOLOGY OF IRREGULAR-SHAPED PARTICLES [J].
ORFORD, JD ;
WHALLEY, WB .
SEDIMENTOLOGY, 1983, 30 (05) :655-668
[10]   SELF-SIMILARITY AND A PHASE-TRANSITION-LIKE BEHAVIOR OF A RANDOM GROWING STRUCTURE GOVERNED BY A NON-EQUILIBRIUM PARAMETER [J].
SAWADA, Y ;
OHTA, S ;
YAMAZAKI, M ;
HONJO, H .
PHYSICAL REVIEW A, 1982, 26 (06) :3557-3563