LORENZ ATTRACTORS THROUGH SILNIKOV-TYPE BIFURCATION .1.

被引:69
作者
RYCHLIK, MR [1 ]
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
关键词
D O I
10.1017/S0143385700005915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is a construction of geometric Lorenz attractors (as axiomatically defined by J. Guckenheimer) by means of an omega-explosion. The unperturbed vector field on R3 is assumed to have a hyperbolic fixed point, whose eigenvalues satisfy the inequalities lambda-1 > 0, lambda-2 < 0, lambda-3 < 0 and \lambda-2\ > \lambda-1\ > \lambda-3\. Moreover, the unstable manifold of the fixed point is supposed to form a double loop. Under some other natural assumptions a generic two-parameter family containing the unperturbed vector field contains geometric Lorenz attractors. A possible application of this result is a method of proving the existence of geometric Lorenz attractors in concrete families of differential equations. A detailed discussion of the method is in preparation and will be published as Part II.
引用
收藏
页码:793 / 821
页数:29
相关论文
共 26 条
[1]  
Abraham R., 1967, TRANSVERSAL MAPPINGS
[2]  
Arnold VI., 1983, GEOMETRICAL METHODS
[3]  
BOWEN R, 1975, LECTURE NOTES MATH, V470
[4]  
HIRSCH M, 1977, LECTURE NOTES MATH
[5]  
Irwin M., 1970, B LOND MATH SOC, V2, P196, DOI DOI 10.1112/BLMS/2.2.196
[6]   GENERALIZED BOUNDED VARIATION AND APPLICATIONS TO PIECEWISE MONOTONIC TRANSFORMATIONS [J].
KELLER, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (03) :461-478
[7]  
LEONTOVICH E, 1951, DOKL AKAD NAUK USSR, V78
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2