ON SPARSE SPANNERS OF WEIGHTED GRAPHS

被引:371
作者
ALTHOFER, I
DAS, G
DOBKIN, D
JOSEPH, D
SOARES, J
机构
[1] MEMPHIS STATE UNIV, DEPT MATH SCI, MEMPHIS, TN 38152 USA
[2] PRINCETON UNIV, DEPT COMP SCI, PRINCETON, NJ 08544 USA
[3] UNIV WISCONSIN, DEPT COMP SCI, MADISON, WI 53706 USA
[4] UNIV SAO PAULO, IME, MAC, BR-01498 SAO PAULO, BRAZIL
[5] UNIV CHICAGO, DEPT COMP SCI, CHICAGO, IL 60637 USA
关键词
D O I
10.1007/BF02189308
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G, a subgraph G' is a t-spanner of G if, for every u, v is-an-element-of V, the distance from u to v in G' is at most t times longer than the distance in G. In this paper we give a simple algorithm for constructing sparse spanners for arbitrary weighted graphs. We then apply this algorithm to obtain specific results for planar graphs and Euclidean graphs. We discuss the optimality of our results and present several nearly matching lower bounds.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 26 条
[1]   ON OPTIMAL REALIZATIONS OF FINITE METRIC-SPACES BY GRAPHS [J].
ALTHOFER, I .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :103-122
[2]  
[Anonymous], 1983, DATA STRUCTURES NETW, DOI DOI 10.1137/1.9781611970265
[3]   COMPLEXITY OF NETWORK SYNCHRONIZATION [J].
AWERBUCH, B .
JOURNAL OF THE ACM, 1985, 32 (04) :804-823
[4]  
Awerbuch B., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P479, DOI 10.1145/73007.73053
[5]  
AWERBUCH B, IN PRESS J DISCRETE
[6]   RECONSTRUCTING THE SHAPE OF A TREE FROM OBSERVED DISSIMILARITY DATA [J].
BANDELT, HJ ;
DRESS, A .
ADVANCES IN APPLIED MATHEMATICS, 1986, 7 (03) :309-343
[7]  
BERN M, 1989, COMMUNICATION
[8]  
Bollobas B., 1978, LONDON MATH SOC MONO
[9]  
CHEW LP, 1986, 2ND P ANN S COMP GEO, P169
[10]  
Conway J., 1988, SPHERE PACKING LATTI