NATURAL EXPONENTIAL-FAMILIES WITH QUADRATIC VARIANCE FUNCTIONS - STATISTICAL-THEORY

被引:177
作者
MORRIS, CN
机构
关键词
D O I
10.1214/aos/1176346158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:515 / 529
页数:15
相关论文
共 24 条
[1]   CONSTRUCTION OF UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATORS FOR EXPONENTIAL DISTRIBUTIONS [J].
ABBEY, JL ;
DAVID, HT .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04) :1217-&
[2]  
BLIGHT BJN, 1974, BIOMETRIKA, V61, P137
[3]   CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDITIONAL MOMENTS [J].
BOLGER, EM ;
HARKNESS, WL .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02) :703-705
[4]   CONJUGATE PRIORS FOR EXPONENTIAL FAMILIES [J].
DIACONIS, P ;
YLVISAKER, D .
ANNALS OF STATISTICS, 1979, 7 (02) :269-281
[5]  
DUAN N, 1979, 135 STANF U DEP STAT
[6]   STEINS ESTIMATION RULE AND ITS COMPETITORS - EMPIRICAL BAYES APPROACH [J].
EFRON, B ;
MORRIS, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (341) :117-130
[7]  
ERICSON WA, 1969, J ROY STAT SOC B, V31, P332
[8]   ON THE ATTAINMENT OF CRAMER-RAO AND BHATTACHARYYA BOUNDS FOR THE VARIANCE OF AN ESTIMATE [J].
FEND, AV .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (02) :381-388
[9]  
GUOYING L, 1981, COMMUNICATIONS SCI
[10]   THETA2-MINIMAX ESTIMATORS IN EXPONENTIAL FAMILY [J].
JACKSON, DA ;
ODONOVAN, TM ;
ZIMMER, WJ ;
DEELY, JJ .
BIOMETRIKA, 1970, 57 (02) :439-&