A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL-TREES

被引:40
作者
CHUNG, FRK
GRAHAM, RL
机构
关键词
D O I
10.1111/j.1749-6632.1985.tb14564.x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:328 / 346
页数:19
相关论文
共 11 条
[1]  
Chung F.R. K., 1976, B I MATH ACAD SINICA, V4, P313
[2]   LOWER BOUND FOR STEINER TREE PROBLEM [J].
CHUNG, FRK ;
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) :27-36
[3]   A NEW BOUND FOR THE STEINER RATIO [J].
DU, DZ ;
HWANG, FK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (01) :137-148
[4]  
DU DZ, J COMBIN THEORY A
[5]  
Garey M. R., 1979, Computers and Intractability: A Guide to the Theory of np-Completeness, DOI DOI 10.1109/TEST.1990.114069
[6]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[7]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[8]  
Graham R.L, 1976, B I MATH ACAD SINICA, V4, P177
[9]   STEINER MINIMAL TREES WITH RECTILINEAR DISTANCE [J].
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) :104-115
[10]  
KALLMAN RR, 1973, STUD APPL MATH, V52, P141