FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION

被引:279
作者
BARDOS, C [1 ]
GOLSE, F [1 ]
LEVERMORE, CD [1 ]
机构
[1] UNIV ARIZONA,TUCSON,AZ 85721
关键词
D O I
10.1002/cpa.3160460503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using relative entropy estimates about an absolute Maxwellian, it is shown that any properly scaled sequence of DiPerna-Lions renormalized solutions of some classical Boltzmann equations has fluctuations that converge to an infinitesimal Maxwellian with fluid variables that satisfy the incompressibility and Boussinesq relations. Moreover, if the initial fluctuations entropically converge to an infinitesimal Maxwellian then the limiting fluid variables satisfy a version of the Leray energy inequality. If the sequence satisfies a local momentum conservation assumption, the momentum densities globaly converge to a solution of the Stokes equation. A similar discrete time version of this result holds for the Navier-Stokes limit with an additional mild weak compactness assumption. The continuous time Navier-Stokes limit is also discussed.
引用
收藏
页码:667 / 753
页数:87
相关论文
共 18 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]   THE NONACCRETIVE RADIATIVE-TRANSFER EQUATIONS - EXISTENCE OF SOLUTIONS AND ROSSELAND APPROXIMATION [J].
BARDOS, C ;
GOLSE, F ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) :434-460
[3]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[4]  
BARDOS C, 1989, CR ACAD SCI I-MATH, V309, P727
[5]   DENSITY VARIATIONS IN WEAKLY COMPRESSIBLE FLOWS [J].
BAYLY, BJ ;
LEVERMORE, CD ;
PASSOT, T .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (05) :945-954
[6]  
CAMPINI M, 1991, THESIS U ARIZONA
[7]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[8]  
Constantin P., 1988, CHICAGO LECTURES MAT
[9]   INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION [J].
DEMASI, A ;
ESPOSITO, R ;
LEBOWITZ, JL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1189-1214
[10]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366