AN ALGORITHM FOR INDEFINITE INTEGER QUADRATIC-PROGRAMMING

被引:14
作者
ERENGUC, SS
BENSON, HP
机构
[1] Department of Decision, Information Sciences University of Florida, Gainesville
关键词
D O I
10.1016/0898-1221(91)90164-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for finding the global minimum of an indefinite quadratic function over the integers contained in a compact, convex set. To find this minimum, the algorithm first transforms the problem into an equivalent problem with a separable objective function. It then uses a branch and bound search on the values of the constraints, rather than the variables, of the transformed problem.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 33 条
[1]   A TIGHT LINEARIZATION AND AN ALGORITHM FOR ZERO-ONE QUADRATIC-PROGRAMMING PROBLEMS [J].
ADAMS, WP ;
SHERALI, HD .
MANAGEMENT SCIENCE, 1986, 32 (10) :1274-1290
[2]  
ADAMS WP, 1983, MIXED INTEGER BILINE
[3]   DUALITY IN DISCRETE PROGRAMMING .2. QUADRATIC CASE [J].
BALAS, E .
MANAGEMENT SCIENCE SERIES A-THEORY, 1969, 16 (01) :14-32
[4]   NONLINEAR 0-1 PROGRAMMING .1. LINEARIZATION TECHNIQUES [J].
BALAS, E ;
MAZZOLA, JB .
MATHEMATICAL PROGRAMMING, 1984, 30 (01) :1-21
[5]  
BALAS E, 1984, MATH PROGRAM, V30, P22, DOI 10.1007/BF02591797
[6]   SOLVING CERTAIN NONCONVEX QUADRATIC MINIMIZATION PROBLEMS BY RANKING EXTREME POINTS [J].
CABOT, AV ;
FRANCIS, RL .
OPERATIONS RESEARCH, 1970, 18 (01) :82-&
[7]   ALGORITHM FOR SEPARABLE NONCONVEX PROGRAMMING PROBLEMS [J].
FALK, JE ;
SOLAND, RM .
MANAGEMENT SCIENCE SERIES A-THEORY, 1969, 15 (09) :550-569
[8]  
Fortet R, 1959, CAHIERS CTR DETUDES, V4, P5
[9]  
GALLO G, 1980, MATH PROGRAM STUD, V12, P132, DOI 10.1007/BFb0120892
[10]  
GLOBER F, 1975, MANAGE SCI, V22, P455