LOOP EQUATIONS AND VIRASORO CONSTRAINTS IN NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY

被引:408
作者
DIJKGRAAF, R [1 ]
VERLINDE, H [1 ]
VERLINDE, E [1 ]
机构
[1] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90199-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We give a derivation of the loop equation for two-dimensional gravity from the KdV equations and the string equation of the one-matrix model. We find that the loop equation is equivalent to an infinite set of linear constraints on the square root of the partition function satisfying the Virasoro algebra. We give an interpretation of these equations in topological gravity and discuss their extension of multi-matrix models. For the multi-critical models the loop equation naturally singles out the operators corresponding to the primary fields of the minimal models.
引用
收藏
页码:435 / 456
页数:22
相关论文
共 40 条
[1]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[2]  
BACHAS C, 1990, CERNTH571490 PREPR
[3]   EXTENSIONS OF THE VIRASORO ALGEBRA CONSTRUCTED FROM KAC-MOODY ALGEBRAS USING HIGHER-ORDER CASIMIR INVARIANTS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :348-370
[4]   COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :371-391
[5]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[6]   MICROCANONICAL SIMULATIONS OF RANDOMLY TRIANGULATED PLANAR RANDOM SURFACES [J].
BILLOIRE, A ;
DAVID, F .
PHYSICS LETTERS B, 1986, 168 (03) :279-283
[7]  
BOULATOV D, 1986, NUCL PHYS B, V275, P543
[8]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46
[9]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[10]  
COLEMAN S, 1988, NUCL PHYS B, V307, P864