CONVERGENCE OF CONVEX-CONCAVE SADDLE FUNCTIONS - APPLICATIONS TO CONVEX-PROGRAMMING AND MECHANICS

被引:19
作者
AZE, D
ATTOUCH, H
WETS, RJB
机构
[1] UNIV MONTPELLIER,MONTPELLIER,FRANCE
[2] UNIV CALIF DAVIS,DAVIS,CA 95616
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1988年 / 5卷 / 06期
关键词
Functions - Functional programming;
D O I
10.1016/S0294-1449(16)30335-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that operation of partial conjugation (the partial Legendre-Fenchel transform) of bivariate convex-concave functions has bicontinuity properties with respect to the extended epi/hypo-convergence of saddle functions and the epi-convergence of the partial conjugate (convex) functions. The results are applied to study the stability of the optimal solutions and associated multipliers of convex programs, and to a couple of problems in mechanics. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:537 / 572
页数:36
相关论文
共 47 条
[1]  
ATTOUCH H, 1983, T AM MATH SOC, V280, P1
[3]  
ATTOUCH H, 1978, SPRINGER VERLAG LECT, V655, P1
[4]  
ATTOUCH H, 1983, SPRINGER VERLAG LECT, V1091
[5]  
ATTOUCH H, 1981, SPRINGER VERLAG LECT, V979, P1
[6]  
Attouch H., 1984, VARIATIONAL CONVERGE
[7]  
ATTOUCH H, 1981, NONLINEAR PROGRAMMIN, V4, P367
[8]  
AUBIN JP, 1984, ANAL NONLINEAIRE MOT
[9]  
Aubin JP, 1979, MATH METHODS GAME EC
[10]  
AZE D, 1986, RIC MAT, V5, P125